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SIRMA Project Synopsis 

 

  
 

SIRMA aims to develop, validate and implement a robust framework for the efficient 
management and mitigation of natural hazards in terrestrial transportation modes at the 
Atlantic Area, which consider both road and railway infrastructure networks (multi-modal). 
SIRMA leads to significantly improved resilience of transportation infrastructures by 
developing a holistic toolset with transversal application to anticipate and mitigate the effects 
of extreme natural events and strong corrosion processes, including climate change-related 
impacts. These tools will be deployed for critical hazards that are affecting the main Atlantic 
corridors that is largely covered by SIRMA consortium presence and knowledge. SIRMA’s 
objectives will address and strengthen the resilience of transportation infrastructures by:  

● Developing a systematic methodology for risk-based prevention and management 
(procedures for inspection, diagnosis and assessment); 

● Implementing a decision-making algorithm for a better risk management;  
● Creating a hierarchical database (inventory data, performance predictive models, 

condition state indicators and decision-making tools), where information can be 
exchangeable between entities and across regions/countries;  

● Developing a real-time process for monitoring the condition state of transportation 
infrastructure;  

● Enhancing the interoperability of information systems in the Atlantic Area, by taking 
account of data normalization and specificity of each country. 
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Executive Summary 

This report presents a numerical and experimental repository created in the context of SIRMA. 
This report should also be read in conjunction with D5.2 report. The report first presents the 
development of real-time to near real-time detection of features of interest. Subsequently, 
the report addresses time. frequency and statistical markers for features of interest. Finally, 
machine learning, artificial intelligence and similar aspects around features of interest are 
investigated in terms of performance and comparison. The report distinguishes numerical and 
experimental aspects and finally demonstrates implementation in Irish sites as a part of work 
of WP7 and in collaboration with Irish Rail. The repository will be relevant for selection, 
comparison, interpretation, adaptation and assessment of various monitoring aspects around 
built infrastructure and has a focus on railways, in relation to natural and anthropogenic 
hazards.   
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1. Introduction and Context 

With the introduction of a wide range of sensors and networks of sensors, there is an 
unprecedented opportunity for built infrastructure systems to be monitored and railways are 
no exception. However, the rate at which such measurements are to be carried out, the 
locations of measurements, specifications of sensors and the features of interest that are to 
be detected and estimated pose several challenges, many of which are specific to the 
structure. Such monitoring can lead to better decision making with lower impact on resources 
and even safety of workers (many locations can be difficult to access or dangerous). While the 
demand around many of the decisions taken are not required in real time, monitoring features 
of interest in real-time can provide a much better control and decision making options. There 
is a paucity in literature in developing real-time to near real-time monitoring strategies and 
developing ways to compare them numerically and experimentally, thus creating a repository. 

Irrespective of whether monitoring is real-time or not, there are many markers of features of 
interest. They can be linked to the fundamental physics of the system or just to the data, or 
both. The markers can be based on time, frequency, or other statistical measures - and can 
also be a combination of several markers and measures. On the other hand, the features of 
interests are also required to be chosen carefully. Often, existing literature emphasises on 
developing a new way of monitoring where the proposed method is shown to be better than 
other existing methods. This is often unreasonable since this improved performance can often 
be less effective in another situation or type of dataset. Consequently, it is more important to 
obtain and compare the performance of relevant features of interest, rather than a single 
method, marker and feature. This report considers this paradigm shift where the stability, 
robustness, explainability and adaptability of features and their calibrated performances are 
more important than a small edge in performance for a narrow zone of data. Thus, this report 
changes the focus from obtaining the ‘best’ features to a ‘set of acceptable’ features whose 
performance will provide a robust estimate and a clear explanation, and any of the features 
(or a set) may prevail over the other given a certain dataset, but overall their performance will 
be comparable.  

Finally, there is a clear need to implement monitoring features and their performances for real 
sites and implementation of them. This implementation is considered with Irish Rail and 
application in their sites and data, along with some other bridges. The numerical and 
experimental implementations ensure that the applications are demonstratively carried out 
and the continuity and connection from and with WP5 and WP7 are carried out . The work 
also established the developed repository beyond small numerical exercises or controlled 
laboratory conditions and leads to a translation to practice. 
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2. Numerical Repository 

2.1 Real-Time Detection 

In SIRMA, real to near-real time detection is achieved by developing a first order or higher 
order eigenperturbative approach, subsequently handled with appropriate statistical and 
related markers. 

The schematic of single and multi-channel first order perturbation techniques are presented 
in Figure 1 using Hankel and data covariance matrices and subsequently computing first order 
perturbations of the eigenspace using recursive methods (e.g. singular spectrum analysiS 
(RSSA)s, recursive principal component analysis (RPCA) and damage sensitive features (DSF) 
linked to them recursively via markers of interest (typically carried out via recursive residual 
errors). For details, see Bhowmik et al., 2019. 

 
Figure 1:  A real-time eigenperturbative approach for detecting features of interest obtained from monitoring 
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Figure 2 presents damage detection for a 2 story nonlinear Duffing oscillator, for example, 
with 15% stiffness loss and autocorrelations (AR) as damage indicators in the y axis, along with 
estimates around recursive residual (RR) errors. This demonstrates the ability of the method 
of handling nonlinearities. 

 
Figure 2.  Real-time detection of sudden stiffness change in nonlinear systems 

A number of historical laboratory datasets were subsequently tested to link numerics with 
experiments. An example is provided in Figure 3. 
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Figure 3.  Historical datasets for sudden damage changes in a a) cantilever beam with nonlinear boundary 

conditions from a rubber strip, b) a tuned mass damper experimental setup representing passive conrol system 
and c) a Single Degree of Freedom toy cart with sudden changes in stiffness 

Figure 4 presents detection of sudden stiffness change in cantilever beam, Figure 5 presents 
the detection of detuning of tuned mass damper, while Figure 6 presents the detection of 
sudden stiffness changes in the toy cart experimental example. 

 
Figure 4.  Detection of sudden stiffness change in aluminium beam example 
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Figure 5.  Detection of detuning of tuned mass dampers 

 

Figure 6.  Detection of multiple sudden damages in mass toy cart 

Second order methods improving these methods were developed in Mucchielli et al., 2020. 

For details, check: 

Bhowmik, B., Tripura, T., Hazra, B. and Pakrashi, V., 2020. Real time structural modal 
identification using recursive canonical correlation analysis and application towards online 
structural damage detection. Journal of Sound and Vibration, 468, p.115101. 
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Bhowmik B, Tripura T, Hazra B and Pakrashi V. (2020). Robust linear and nonlinear structural 
damage detection using recursive canonical correlation analysis. Mechanical Systems and 
Signal Processing, 136,106499. 

Bhowmik, B., Panda, S., Hazra, B. and Pakrashi, V., 2021. Feedback-driven error-corrected 
single-sensor analytics for real-time condition monitoring. International Journal of Mechanical 
Sciences, p.106898. 

Mucchielli, P., Bhowmik, B., Hazra, B. and Pakrashi, V., 2020. Higher-order stabilized 
perturbation for recursive eigen-decomposition estimation. Journal of Vibration and 
Acoustics, 142(6). 

Bhowmik, Basuraj, Budhaditya Hazra, and Vikram Pakrashi. Real-Time Structural Health 
Monitoring of Vibrating Systems. CRC Press, 2022. 

Bhowmik, B., Tripura, T., Hazra, B., & Pakrashi, V. (2019). First-order eigen-perturbation 
techniques for real-time damage detection of vibrating systems: Theory and applications. 
Applied Mechanics Reviews, 71(6). 

2.2 Time Series Approaches for Data Imputation 

Several data is often missing at random or more frequently, in chunks, from long term 
monitoring of data. To address analysis of such data with missing zones, a data imputation 
approach is considered.  

Several methods are considered in this regard using time series methods with a range of 
complexity and detail including Series Average, Persistence, Moving Average, Interpolation, 
ARIMA, Local Linear Trend, Dynamic Time Warping and Dynamic Linear Model (DLM) and  

Figure7 shows the performance of DLM for missing data in a continuously monitored bridge 
impacted by a low loader and the subsequently repaired.  

More detail on the bridge is presented in section 3, but this sub-section focuses on the  
numerical approach towards missing data imputation, using examples that are from real 
ocurreneces. 
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Figure 7.  Data imputation using Dynamic Linear Modeling 

For data missing at random, similar results are obtained for DLM and presented in Figure 8. 
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Figure 8.  Data imputation using Dynamic Linear Modeling 

 

2.3 Machine Learning, Artificial Intelligence and Features of Interest 

Machine Learining and Artificial Intelligence have expanded themselves to all sectors and 
railway infrastructure is no alien to these ideas. However, for realistic datasets, their 
performance, interpretation and repeatability suffer and consequently their testing is carried 
out in conjunction with experimental and implementation studies, linking WP5 asn WP7 
clearly. 

Under such circumstances, on the numerical side, it is the choice of analysis and features of 
interest that are more relevant. Section 3 is thus recommended for further details on the topic 
and the methods that were compared. 

Here, several features were investigated and a representative sample list is presented in 
Figure 9 to demonstrate how numerical analyses informed and developed the core aspect of 
experimental evidence base and the full scale implementations. 
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Figure 9.  ANOVA ranking of top 80 features of various sources 
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3. Experimental Repository 

3.1 Real-Time Detection 

Real-time detection needs were addressed through eigenperturbation techniques in theory 
and experiments were carried out. Here, in full-scale examples, the Daly’s bridge in Ireland 
(O’Donnell et al., 2017) and its tests were used. 

The Daly’s bridge is an iconic steel suspension footbridge in Cork, Ireland, popularly known as 
the ‘Shakey’ bridge, for its discernible movement under pedestrian loading. The structural 
parameters of this transport system are identified using the video analysis of the dynamic 
deflection under excitation from traversing pedestrians. A wireless sensor network was 
installed throughout the structure to record the vibration data sampled at 50 Hz, with a range 
of ±2g. The video camera positioned at the riverbank aided in visually tracking the video 
analysis at certain pre-selected nodes, which is shown in Figure 10. 

 
Figure 10.  Non-Contact measurements on Daly’s Bridge, Ireland 

For the present study, the vibration responses gathered for the monitored period of 
approximately  was considered for analysis. The structural responses to a pedestrian walking 
over the bridge is analysed in pre-selected window length for estimating the modal 
parameters. Automated windows (W) of 50 samples stretched over the entire output 
response is illustrated in Figure 11. 
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. Figure 11. Vibration response of Daly’s bridge in multiple windows 

The spectral estimate for the complete set of responses obtained from bridge dynamics is 
shown in Figure 12. While the presence of closely spaced modes is evident from the figure, 
the implementation of an automated approach enables the estimation to be implemented 
without any discrepancies. In order to avoid overestimation of the damping ratio, the windows 
are automated to have the same number of samples throughout, which counters the assumed 
periodicity of spectral estimates within a finite measurement time. 

Spurious frequencies arising due to closely spaced modes impair the estimation ability of the 
proposed ET-FDD method, leading to over estimation of damping ratios. Cases where the first 
singular value and neighbouring values indicate a peak corresponding to a certain frequency 
manifests the occurrence of a harmonic instead of an actual structural response. In order to 
avoid this, a stabilization diagram shown in Figure 13 indicates the chosen range where the 
estimate is stable in both frequency and damping. From the figure, frequencies of 1.9 Hz, 2.19 
Hz and 2.32 Hz are found to be stable and therefore, designated as modes of significance.  
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. Figure 12. Spectral Estimate outputs from Daly’s Bridge 

 
 Figure 13. Vibration response of Daly’s bridge in multiple windows 

The windowed response obtained from the automated system is used to estimate the 
damping ratios using the basic TDD approach. Windowed data of 50 samples each are 
analysed in a real time framework to provide estimates of damping ratios corresponding to 
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each mode. Theoretical estimations of modal damping ratios indicate 2%,3% and 2% damping 
in the first three modes, respectively.  

The windowed data is provided as input to the proposed automated real time method. The 
damping is estimated from the logarithmic envelope of the correlation function for each 
window. The evolution of the damping estimates for each window is graphically illustrated in 
Figure 14. However, it should be realized that an improved damping estimate for higher 
modes requires records of longer duration, where the loading can be in the form of repeated 
trials of pedestrians walking over the bridge.  

 
 Figure 14. Evolution of damping ratios from obtained results 

An important consideration related to the damping ratio estimates lie in the resolution of 
samples adopted during the PSD matrix evaluation. The PSD matrix, computed at each 
sampled window length, fulfils all the properties required for correct working of the proposed 
ET-FDD technique, which include real diagonal terms and complex conjugate off-diagonal 
entities, thereby leading to a Hermitian matrix. The use of correct sampling resolution in an 
automated real time framework affects directly the number of spectral bells that are available 
prior to the projection into the time domain. Especially with short structural recordings the 
resolution can be enhanced by increasing the number of samples corresponding to each 
chosen window. For cases where the enhancement of sampling resolution is unattainable, a 
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zero-excitation time window added at the end (zero-padding) of the recordings can increase 
the duration of the response.  

See also for details: Bhowmik, Basuraj, et al. Damping estimation of a pedestrian footbridge–
an enhanced frequency-domain automated approach. Journal of Vibroengineering 23.1 
(2021): 14-25. 

3.2 Time Series Approaches 

A dynamic Harmonic Regression approach was created for monitoring slowly sampled 
structures, especially in the context of strain measurements. This was applied to the 
monitoring of an impact damaged bridge and details are available in Buckley et al., 2021. 
These data often have parts missing and the forecast or backcasting approaches thus require 
a time series solution. Figure 15 presents the overall way of handling such a situation, The DHR 
methodology is applied to strain data recorded at minute intervals from an impact damaged 
prestressed bridge (Pakrashi et al., (2013))  between 08:19hrs on the 28/04/2010 and 18:51hrs 
on the 7/05/2010, with a total of 12,011 data points of a minute interval.  

The Brownsbarn bridge (Figure 16) is a two-span continuous slab-girder bridge consisting of 
six precast prestressed U8 simply supported concrete beams of 27.35m length and without 
skew. It is connected by a continuity diaphragm and spans the national road N7 in the Republic 
of Ireland connecting its two largest cities. The bridge was damaged after being struck by a 
low-loader carrying an excavator passing underneath the bridge. The reinforced concrete 
piers are integral to the deck and the ends of the bridge are simply supported. The abutments 
are made of reinforced concrete. The continuity diaphragm is connected to the U8 beams 
through steel plates of dimension 300mmx30mmx1700mm.  

The monitoring points were chosen so that local strains from both the damaged and 
undamaged beams can be recorded so that a comparison can be made during the strength 
gain period post repair and before re-opening of the bridge for normal operations.  There are 
three monitoring points at the centre (MP2, MP4, and MP5) and at the two ends of the 
damage (MP1 and MP3), at the centre of the two undamaged beams, and the two sides of the 
damaged beams. An example of strain measurement data is provided in Figure 17. 
Environmental challenges of such monitoring are reflected in Figure 18 where strain versus 
temperature data for a healthy period is presented. 

Figure 19 presents the application of the dynamic harmonic regression model created while 
Figure 20 demonstrates through backcasting how such model can be used for anomaly and 
damage detection. 
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Figure 15.  Flow Chart of Dynamic Harmonic Regression Model and Automated Damage Detection Algorithm 
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Figure 16.  Brownsbarn Bridge Rehabilitation in Ireland and Related Sensor Placement 

 

Figure 17. Strain measurement data from a representative gauge 
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Figure 18. Strain Vs Temperature in Healthy Period 
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Figure 19.. Analysis of DHR-T model applied to strain gauge 7: (a) histogram of residuals, (b) forecast onto 
validation data set, (c) residual ACF plot and (d) backcast onto backcast test data set. 
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Figure 20.  60-step backcasts from healthy (further strength gain -J) period onto removal of load (I) and periods of 
concrete hardening (H and G) periods. 
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See more in:  

Pakrashi V, Harkin J, Kelly J, Farrell A, and Nanukuttan S. (2013). Monitoring and Repair of an 
Impact Damaged Prestressed Concrete Bridge, Proceedings of the Institute of Civil Engineers, 
Journal of Bridge Engineering, 166(1), 16-29 

Buckley B, Ghosh B and Pakrashi V. (2021). A Dynamic Harmonic Regression Approach for 
Structural Health Monitoring. Structural Health Monitoring, 
https://doi.org/10.1177/1475921720981735 

 

3.3 Feature Selection 

What feature to choose and how to address their performance has always been an important 
question in structural health monitoring. In this regard, a comprehensive analysis was carried 
out on full scale tests on the well known Z24 and S101 data. The S101 Bridge (Figure 21) was 
pre-stressed 3-span flyover near Vienna in Austria that had a main span of 32m and two 12m 
side spans. In 2008, the S101 Bridge was to be replaced due to insufficient carrying capacity 
and deteriorating structural condition, identified from visual inspection. 

 
Figure 21.  a) S101 Bridge b) sensor location grid, adapted from (VCE. Progressive Damage Test S101 Flyover 

Reibersdorf (draft), Tech. Report 08/2308, (2009)) 

Progressive damage was conducted on the S101 Bridge across 3 days from 17:16 on the 
10/12/2008 to 11:04:00 on the 13/12/2008. During this period, the bridge was closed to 
traffic. Therefore, asides from induced damage events, bridge excitations were mainly 
ambient. One traffic lane beneath the bridge was kept in use. There are 14 sensors located on 
the east side and one reference sensor on the west side of the bridge with data recorded at a 
sampling rate of 500Hz. Minimal temperature variation was observed throughout the test 
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duration as sub-zero temperatures were kept within a 3 to 4 degree range, day and night, due 
to persistent heavy cloud cover. 

This event timeline (Buckley et al., 2022) is organised into 12 separate sequences and analysed 
as separate damage classifications. Each sequence corresponds to a damage state caused by 
an action on the bridge and any subsequent monitoring before the next action.  

The well known Z24 dataset was recorded from a pre-stressed concrete, 14-30-14m span, 
highway bridge in Switzerland, (Figure 22). Two rows of three pinned concrete columns are 
supporting the bridge at the endpoints and two concrete piers clamped into the girders are 
situated at the end points of the main span. Although there were no known structural 
problems with the bridge, it had to be demolished because a new railway next to the highway 
required a bridge with a larger side span. A detailed description of the monitoring can be found 
in (Peeters and De Roeck, (2001)). 

 

 
Figure 22.  (a) Z24 bridge (b) close up view of bridge (c) longitudinal section and plan view of Z24 bridge (Maeck 

and De Roeck, (2003)) 

Prior to its demolition, it was monitored for almost an entire year, from 10th November 1997 
to the 10th September 1998, using a network of accelerometers and environmental sensors 
measuring air temperature, soil temperature, humidity etc. 

The almost year long period of passive monitoring is described as the Environmental 
Monitoring System (EMS). At the end of the monitoring campaign, an extensive network of 
accelerometers were placed across the bridge and the bridge was subjected to 16 Progressive 
Damage Tests (PDTs). Due to the lack of long term monitoring data where a healthy structure 
experiences damage, the Z24 dataset has become the benchmark dataset in the field of SHM 
over the last 20 years.  
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A comprehensive spearman correlation plot for features of S101 data is presented in Figure 
23 while that for Z24 is in Figure 24. The outcomes demonstrate how, rather than trying to 
find the best performance, it is appropriate and even more consistent to look for a set of 
features that perform reasonably well and then the outcomes of assessment are robust. 
Within a range of datasets, the choice of a set of individual features will lead to results that 
might prevail over others slightly, but the features to avoid are well established. This leads to 
a more stable and explainable way of assessing the features and the monitoring aspects they 
link to. 

 
Figure 23. Spearman rank correlation for features related to S101 bridge monitoring 
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Figure 24. Spearman rank correlation for features related to Z24 bridge monitoring 

3.4 Machine Learning and Artificial Intelligence 

S101 has significantly imbalanced data as compared to Z24 and so this gives an opportunity to 
compare Machine Learning and Artificial Intelligence approaches, their comparisons and 
limitations. 

A stratified cross validation procedure is implemented for this purpose and a standard 5-fold 
stratified cross validation is chosen which results in an 80-20 train-test split across each fold 
and each damage state. The data is not shuffled so that the time sequence within each class 
is maintained.Support Vector Machine (SVM), Bagged Tree, Random Forest, K neighbours, and 
Naïve Bayes were used and optimal hyperpaprameters were chosen from the data. Rather 
than using a nested gridsearch within each cross-validation fold when modelling the data, the 
parameters that maximise the classification prediction performance are chosen in advance 
from the entire dataset to ensure comparability of models across different cross validation 
folds for each feature selection method. To create a baseline against which the reduced 
feature sets can be compared, the classification methods presented in the methodology are 
first applied to the entire feature set. Figure 25 shows the results of various approaches for 
S101 bridge while Figure 26 shows the same for Z24. 
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Figure 25. Recursive Feature Elimination (RFE) for varying percentiles of decorrelated feature set, ranked by 

permutation importance, S101 dataset 

 
Figure 26. Recursive Feature Elimination (RFE) for varying percentiles of decorrelated feature set, ranked by 

permutation importance, Z24  dataset 
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4. Implementation  

4.1 Context 

UCD worked closely with Irish Rail to carry out implementation in Irish Rail assets and ensure 
that despite Covid19 related challenges, translation of WP5 work, its implementation in full 
scale and integration with WP7 are established. To this extent, existing data from a pilot study 
on an instrumented train over a well known accident and its repair in Ireland are considered. 
This was subsequently followed up with a full test on a scour impacted bridge.These two 
examples clearly demonstrate not only how damage may be detected related to hazards, but 
also how repair can also be assessed. These methods can be adapted to other networks and 
application areas as well. 

4.2 Malahide Viaduct Example 

In 2009, two spans and one pier foundation of the Malahide Railway Viaduct were replaced 
with stiffer elements after a scour induced collapse. Six years later, a pilot test with an 
instrumented carriage collected train vibration data as the vehicle travelled repeatedly over 
the viaduct on the Dublin-Belfast railway track. This pilot data is first used for assessment and 
full scale implementation possibility, extending the numerical and laboratory experiments. 
Figure 27 presents the location of the bridge. The Malahide Viaduct was constructed in 1844 
over the Broadmeadow Estuary, Dublin, Ireland, to serve the double railway track between 
Dublin and Belfast. The viaduct has been rebuilt a few times over the years due to 
erosion/deterioration and necessary strengthening required by heavier trains. The last 
intervention at the bridge took place in late 2009 after two spans and one pier collapsed due 
to bridge scour. The replaced span beams are considerably stiffer than those of other spans 
and the new pier foundations with micropiles can be assumed to be stiffer than the timber 
piled foundations of the other piers. 

 
Figure 27. Location of Malahide Viaduct 

The current structure (Figure 28) is almost 175m and consists of  12 spans. The total width is 
~9.0 m. The inner spans (Spans 3 – 10) consist of 15.85 m precast concrete beams while the 
two end spans, also made from precast concrete, are 12.2 m. The beams rest on cut stone 
masonry piers. The new pier (Pier 4) is made from in-situ reinforced concrete with a precast 
bearing shelf. 
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Figure 28. Plan & elevation of the Malahide Viaduct 

The data was obtained from a previous pilot study of the leading carriage of a 5-carriage train 
set which was instrumented with multiple accelerometers to record the vibration response of 
the in-service vehicle.  The measurement system was installed on the leading bogie. The 
available data was over a 5-week period in 2016. Only the vertical acceleration data of the 
bogie collected on the train travelling from Dublin to Belfast is investigated. The velocities of 
the train vary in the range, 85 km/h – 120 km/h and increase as the train crosses the bridge. 
A sample of the vertical acceleration signal of the bogie is shown in Figure 29. A 6th order 
Butterworth lowpass filter with a cut-off frequency of 15 Hz was applied to filter the data and 
the filtered signal is displayed. The acceleration amplitudes recorded on Spans 4 and 5 appears 
to be less than that of the rest of the bridge. This is assumed to be due to stiffer structure in 
this location. 

  
Figure 29. Sample vertical acceleration of a bogie 

A scalogram (Figure 30) shows the signal for the train on the bridge and on the track 
before/after it. There is less vibration in the stiffened spans, particularly for the dominant 
frequencies. It is acknowledged that a second region of low vibration is evident towards the 
end of the bridge, where the spans have not been stiffened. 
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Figure 30. Acceleration responses of a train on a bridge and related scalogram  

A model of the train bridge interaction was subsequently developed and a parameter study 
led to a reasonable match with the model with the experiments, which further led to 
estimates of impact of various parameters on the system. The dashed blue curve in Figure 31 
depicts the signal obtained from the numerical model. The velocity of the train was set at a 
constant value of 103.6 km/h in the model.  

This represents the average velocity recorded for. The measured acceleration for this 
particular run is plotted as the solid (black) curve and is used as the benchmark. The simulated 
signal across the new pier and spans correlates well with the field measurements.  

In addition, at the other piers, there is a good match between the simulated and measured 
field signal. It acts as a stable reference and is considered to correspond well to the field 
examples. 
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Figure 31. Examples of model-based comparison of field measurements and subsequent establishment of 

baseline signal 

A 25 m section of the bridge is illustrated in Figure 32 including the entire stiffened Span 5 and 
partial sections of Spans 4 and 6 to investigate variations of speed, representative of testing 
ranges. The variations in the signal due to velocity are significant at about 100 m and 110 m 
distance along the bridge, as well as around the piers. The differences in the measured signal 
are clearly more significant and are not simply the result of small velocity differences. 

 

 
Figure 32. Model based estimates of effects of changes in velocity and comparison with field measurements 

4.3 Scour Repair Assessment 

Within Irish Rail network, the scour repair assessment of UBE30 bridge was taken up next for 
implementation. This also is representative of one of the SIRMA hazards. 
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The bridge is located in County Clare, Ireland, over the River Robe (Figure 33). UBE30 has a 
single span of 4.5 m length and serves a single railway line between Limerick City and 
Sixmilebridge City.  

 
Figure 33. Location of UBE30 bridge in Ireland undergoing scour repairs 

The superstructure consists of precast concrete beams supported by masonry and concrete 
abutments. A photograph of the bridge before repair is presented in Figure 34. It can be 
observed that the site was already prepared/equipped for the repair works.  

 
Figure 34. UBE30 bridge in Ireland before and after scour repairs  

Scour defects were identified along the west abutment and the repair works are presented in 
Figure 35. A 80 cm wide concrete encase-ment was the repair solution adopted for this bridge. 
Six wireless accelerometers were used to collect abutment acceleration data in a synchronized 
manner with measurement range +/1 10g, accuracy 10mg, resolution 12 bit, sampling 
frequency 128Hz (Figure 36). Each abutment was instrumented with three sensors installed 
on the concrete surface). Accelerometers S1, S2 and S3 were installed on the west abutment 
at approximately 1 m apart and approximately 1.8 m from the edges of the abutment at a 
height of 2.5 m. A similar attempt was made to keep these proportions on the east abutment 



 

 
 

 

 

D5.2 – A Numerical and Experimental Repository 36 

 

for S4, S5 and S6, but small variabilities existed due to accessibility at the abutment concrete 
surface.  

 

Figure 35. Sensor (accelerometers) placement on UBE30 for detecting changes due to before and after scour 
repair 

 

Figure 36. Photographs of Sensor (accelerometers) placement two abutments 

Accelerations induced by five passing trains were collected at different frequencies. Data 
produced by Train 3, travelling from Sixmilebridge to Limerick, is presented (Figure 37) for all 
six sensors. Train 3, which is a 2-carriage train, needs approximately 2 seconds to cross the 
bridge.  Data were collected two weeks apart before and after the repair works were per-
formed.  
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Figure 37. Acceleration responses recorded in sensors before and after repair 

Data analysis was carried out in both frequency and time domains, looking into various ways 
of measurement analyses and also indicators of features of interest. This is in line with the 
previous sections of this report as well as with report D5.3. 

The measured acceleration data is analysed firstly in the frequency domain to assess changes 
in the dynamic parameters of the bridge before and after the scour repair. Traditional 
vibration-based scour detection techniques analyses bridge modal parameters, such as 
natural frequencies, mode shapes and damping. Since damping estimates are more variable, 
methods based on natural frequency and mode shape have received more attention for scour 
detection techniques. The bridge natural frequencies tend to reduce due to scour due to the 
change of boundary conditions but this change may get influenced by a shape of the scour 
hole (symmetrical/unsymmetrical), and the non-linear behaviour of soil underneath the 
founda-tion. For this reason, bridge Operating Deflection Shapes (ODS) and mode shapes were 
used for analysing the data in the frequency domain and Mahalanobis distances between each 
sensor’s result before and after scour repair were assessed. 

Due to simplicity and ease of execution with reasonable results, Frequency Domain 
Decomposition (FDD) technique is used to extract first mode shape of the bridge abutments 
from the measured accelerations. FDD is a peak-picking technique that uses singular value 
decomposition of the spectral density matrix for each frequency of the response . The singular 
vectors obtained using the FDD technique provide the mode shape amplitudes corresponding 
to a selected frequency. 

For time domain analyses, Principal Component Analysis (PCA) was chosen due to its ability of 
dimensionality reduction and sensitivity to changes due to environment and structural 
damage. PCA is the orthogonal projection of the data onto a lower dimensional space, 
(principal subspace) so that the variance of the projected data is maximized. On reducing the 
complex data set to a lower dimension, PCA reveals some simplified structures relevant to the 
data set which can be extracted using eigenvalue decomposition on the sample covariance 
matrix.  
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Here the output acceleration responses are taken for PCA and from the principal subspace, 
the principal com-ponents (PCs) that explain more than 90% of the variance are considered. 
Mahalanobis distance applied on the PCs are shown to distinguish the rehabilitation stage 
from the degraded system state.  

 

Figure 38. Auto Power Spectrum estimates for before and after repair 

For the analysis of the in the frequency domain, Auto Power Spectrum (APS) based operational 
deflected shapes (ODS) and the first mode shape were calculated from bridge accelerations 
due to traversing Train 3 before and after the scour repair work. The principal components 
(PC) of the measured parameters for each sensor are calculated which are then used to obtain 
the values of Mahalanobis distance between PC of each sensor and all other sensors. The 
average value of Mahalanobis distance from each sensor is compared before and after the 
scour repair. The results of the Mahalanobis distances from each sensor APS before and after 
scour repair are shown in Figure 38. Similarly, the results using first mode shape amplitudes 
from each sensor before and after scour repair are shown in Figure 39. 

   

Figure 39. Modeshape based estimates with Mahalanobis distance as a marker for before and after repair  
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Figure 40. A Principal Component Analysis based time domain estimates with Mahalanobis distance as a marker 
for before and after repair 

In order to provide a clearer understanding of the time domain analysis, the acceleration 
signals obtained from the sensors are first transformed to an orthogonal space using PCA. This 
reduced order model now contains the PCs which by themselves are inadequate to identify 
the pre and post repair stage of the bridge. The use of Mahalanobis distance as the damage 
indicator between the sensor PCs provide exact information before and after repairs. Figure 
40 clearly presents the Mahalanobis distance features before and after the scour repairs. It is 
evident that time domain methods are equally efficient at determining the monitored state 
of a system. A real-time approach is possible but it can be more complex. Moreover, there is 
less need in this case for a real-time detection.  

4.4 Further Application in Irish Rail Network 

The Irish Rail network, even though small has significant assets. For scour, there are already 
several bridges which are affected and such instrumentation and monitoring can be of great 
use.  

Similarly, there are other hazards like flooding, for which extensive inspection are often 
needed and instrumentation like this can help in assessing the condition of vulnerable 
structures. 

Old bridges requiring loading restrictions, detection of soft spots along rails and assessment 
of repairs are also aspects where such applications can be useful. 

Overall, good instrumentation and measurement can often save time and money, while 
maximising safety and serviceability.  
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It also allows for an extensive evidence base for decision making on railway infrastructure 
assets. 

This report summarises the work that supports the repository along with representative 
results. All data and codes are available on request. The applications and implementations use 
real examples from infrastructure and consequently it has been made as open as necessary 
but as closed as needed.  

 
Figure 41. The Irish Rail Network 

See further in: 

Micu, E. A., Khan, M. A., Bhowmik, B., Florez, M. C., Obrien, E., Bowe, C., & Pakrashi, V. (2021, 
August). Scour Repair of Bridges Through Vibration Monitoring and Related Challenges. In International 
Conference of the European Association on Quality Control of Bridges and Structures (pp. 499-508). 
Springer, Cham. 

Micu, E. Alexandra, Eugene J. OBrien, Cathal Bowe, Paul Fitzgerald, and Vikram Pakrashi. "Bridge 
damage and repair detection using an instrumented train." Journal of Bridge Engineering 27, no. 3 
(2022): 05021018.
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