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SIRMA Project Synopsis 

 

  
 

SIRMA aims to develop, validate and implement a robust framework for the efficient 
management and mitigation of natural hazards in terrestrial transportation modes at the 
Atlantic Area, which consider both road and railway infrastructure networks (multi-modal). 
SIRMA leads to significantly improved resilience of transportation infrastructures by 
developing a holistic toolset with transversal application to anticipate and mitigate the effects 
of extreme natural events and strong corrosion processes, including climate change-related 
impacts. These tools will be deployed for critical hazards that are affecting the main Atlantic 
corridors that is largely covered by SIRMA consortium presence and knowledge. SIRMA’s 
objectives will address and strengthen the resilience of transportation infrastructures by:  

 Developing a systematic methodology for risk-based prevention and management 
(procedures for inspection, diagnosis and assessment); 

 Implementing a decision-making algorithm for a better risk management;  

 Creating a hierarchical database (inventory data, performance predictive models, 
condition state indicators and decision-making tools), where information can be 
exchangeable between entities and across regions/countries;  

 Developing a real-time process for monitoring the condition state of transportation 
infrastructure;  

 Enhancing the interoperability of information systems in the Atlantic Area, by taking 
account of data normalization and specificity of each country. 
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Executive Summary 

The aim of this document is to present the remote sensing platforms to be used for data 
acquisition in the context of SIRMA project. Moreover, a general view of the monitoring 
scenarios is also exposed. 

The inspection of the road and railway network will be performed considering their division in 
two main groups: the structure of the infrastructure and its surroundings. The remote 
monitoring technologies are: (i) laser scanning, (ii) photogrammetry, and (iii) satellite imaging. 

Operators and infrastructure owners presented some requirements that should be met by the 
specific technologies that will be used in each of the case studies of SIRMA. Based on the user 
needs, the monitoring scenarios can be defined, and data acquisition protocols can be 
addressed. 
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1. Introduction and Context 

This document offers a detailed description of the remote sensing platforms to be used for 
data acquisition of road and railway networks in the Atlantic Area. 

SIRMA aims to develop, validate and implement a robust framework for the efficient 
management and mitigation of natural hazards in terrestrial transportation modes at the 
Atlantic Area, which consider both road and railway infrastructure networks (multi-modal). 
SIRMA leads to significantly improved resilience of transportation infrastructures by 
developing a holistic toolset with transversal application to anticipate and mitigate the effects 
of extreme natural events and strong corrosion processes, including climate change-related 
impacts. These tools will be deployed for critical hazards that are affecting the main Atlantic 
corridors that is largely covered by SIRMA consortium presence and knowledge. SIRMA’s 
objectives will address and strengthen the resilience of transportation infrastructures by: 

 Developing a systematic methodology for risk-based prevention and management 
(procedures for inspection, diagnosis and assessment); 

 Implementing a decision-making algorithm for a better risk management; 
 Creating a hierarchical database (inventory data, performance predictive models, 

condition state indicators and decision-making tools), where information can be 
exchangeable between entities and across regions/countries; 

 Developing a real-time process for monitoring the condition state of transportation 
infrastructure; 

 Enhancing the interoperability of information systems in the Atlantic Area, by taking 
account of data normalization and specificity of each country. 

In order to fulfil this, the project proposes to use different remote sensing technologies in 
order to collect the necessary data to perform infrastructure monitoring. The monitoring 
techniques to be used in SIRMA project are divided in two main groups: terrestrial monitoring 
and satellite monitoring. Terrestrial remote sensing technologies use LiDAR sensors and 
image-based sensors to obtain geometric and radiometric data from the scenarios under 
study with high resolution and accuracy. On the other hand, satellites might be equipped with 
radar or optical sensors, monitoring a wide area as images for monitoring the real state of the 
infrastructure and its surrounding area. Depending on the specific application, one technology 
or other will be used in SIRMA. The selection will be made taking into account the 
requirements and fulfilling the necessities of the infrastructure owners and their operators. 

With this context, this document contains the following information: 

- State of the art review on remote sensing technologies for monitoring transport 
infrastructures. Current trend on remote sensing-based applications (Section 2) 

- Background in remote sensing technologies and platforms to be used in the context of 
the project (Section 3) 

- Description of the monitoring scenarios chosen in the Atlantic Area (Section 4) 
- Dara acquisition protocols for the monitoring of critical infrastructures (Section 5) 
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2. State of the Art in Remote Sensing for the Monitoring of Transport 
Infrastructure  

This section presents the state-of-the-art concerning the monitoring of the transport network, 
both road and railway infrastructures, using remote sensing technologies. The focus is put in 
the latest trends on applications and data processing practises. 

2.1 Inspection and Monitoring of Road networks 

2.1.1 Terrestrial monitoring 

LiDAR technologies, and specifically mobile mapping systems (MMS) including LiDAR, allow to 
rapidly and comprehensively collect information of the road structure, its features and assets 
from its environment in form of point cloud data, which can be enriched with images. 
Continuous advancements in computer technologies have made possible the progressive 
automation of data processing for three-dimensional (3D) point clouds. 

2.1.1.1 Surface extraction 

One of the first steps that is usually taken within the workflow of a road point cloud analysis 
is to segment the road itself (i.e. the road surface) from the rest of the objects captured in the 
point cloud. There are different approaches to carry out this task. Some of them are based on 
an initial conversion of the point cloud into a two-dimensional (2D) raster image, projecting 
the 3D points onto a plane, so image processing methods can be applied to extract the ground. 
In (Rodríguez-Cuenca et al., 2016), the captured 3D data is projected onto the XY plane to 
apply a segmentation algorithm. This algorithm is based on morphological operations, 
detecting curb edges using the roughness data contained in the point cloud. Another 
computer vision technique that can be applied for road segmentation on a raster is the use of 
parametric active contour models (also called “snake models”). This consists on getting a 
parametrized curve to adapt it to an object boundary by balancing an energy function, which 
is useful to extract the road edges and therefore, delimitate the road surface area. (Kumar et 
al., 2013) combined two of these models, namely GVF (Gradient Vector Flow) and Cohen’s 
balloon model, to define an algorithm capable of extracting road edges from point cloud data 
(elevation, reflectance and pulse width); they also introduce a novel initialization of the snake 
model based on the trajectory information from the mobile mapping system. 

The surface extraction process can also be done directly from 3D data, using voxelization 
techniques instead of rasterization. In (Zai et al., 2018), the point cloud is divided in several 
blocks to simplify its processing, and then facets (supervoxels) are generated according to the 
points’ attributes, integrating neighbouring coplanar points. Boundary points between non-
coplanar facets are extracted, selecting those corresponding to road edges according to the 
trajectory data of the surveying vehicle. Road boundaries are generated through energy 
minimization, using an iterative graph-cuts based algorithm. 

Another way of detecting road boundaries for road segmentation is by analysing the inherent 
geometric information from unorganized point clouds, as presented in (H. Wang et al., 2015). 
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In this work, the road is partitioned based on the vehicle trajectory and then, a saliency 
analysis is conducted to separate points in two groups: one for points belonging to vertical 
surfaces, and other for horizontal surfaces. Salient points are filtered to detect potential curb 
points, based on their elevation, horizontal length and distance to the trajectory. A modified 
version of this method is presented in (M. Soilán et al., 2018) to detect accessible road 
entrances for pedestrians by analysing the extracted curb points and comparing the entrance 
coordinates with pedestrian crossings locations. 

2.1.1.2 Road markings 

Detection of road markings is a basic task to evaluate the condition of roads, as assessing the 
visibility and wear state of the markings is crucial for the safety of drivers and other users of 
the road. Road markings detection is also a requisite for enabling autonomous driving vehicles. 
Detection and recognition techniques rely on photographic images or video frames as inputs 
to a large extent. In (Ding et al., 2019), road areas containing marking are detected on video 
frames by finding the vanishing point (i.e. the “converge point of a set of parallel lines in the 
projected transformation of a recorded 3D scene”). Then, an IPM (Inverse Perspective 
Mapping) transformation is applied using information about the camera pose to remove the 
perspective deformation effect. This produces a bird’s eye image that improves efficiency for 
marking detection and tracking through the video record, which is performed via MSER 
(Maximally Stable Extremal Regions). MSER is also used by (Jia et al., 2018) to detect road 
markings, although in this case a biologically visual perceptual model is chosen to extract 
marking candidates, obtaining their sparse representation. These sparse solutions are 
combined into a training set to train an AdaBoost (Adaptive Boosting) machine learning 
classifier for markings. 

In order to detect markings on the road surface from point clouds, a typical approach is to 
conduct a rasterization of the road, once segmented, to create an intensity image; this is, an 
image where each pixel represents the intensity information of the 3D points projected on 
that pixel. Because intensity is a measure of the reflectivity, points from road markings will 
show a different intensity compared to those from the rest of the pavement. In (B. Riveiro et 
al., 2015), image processing algorithms are used to isolate painted areas of the raster image 
via a binarization process based on the Otsu thresholding method; then, a median filtering is 
applied to remove noise and gaps on marks’ borders are filled with a closing operation. Zebra 
crossings are detected within the painted areas with a Standard Hough Transform and 
considering logical constraints. The same technique is employed in (Arias et al., 2015). 

In (Mario Soilán et al., 2017), once the markings are extracted from the intensity image and 
further processed to increase their quality, a feature vector GBF (Geometry-Based Feature) is 
generated for each image of a single road marking, containing information about area, shape 
and pixel distribution of the image. These feature vectors are fed into a supervised machine 
learning algorithm that classifies each marking into three possible types: rectangular 
markings, arrows, and others/negatives. In a second hierarchy level of the classification, a 
semantic meaning is assigned to rectangular and arrow markings. 
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2.1.1.3 Road cracks 

Machine learning is also used to detect road cracks on images. A supervised deep 
Convolutional Neural Network (CNN) is introduced in (I. Zhang et al., 2016) to this end. It is 
able to provide a probability map for an image, determining for each point in the image if it 
corresponds to the crack or to the background. The use of a CNN to provide probability maps 
for crack detection from images is also explored in (Kim & Cho, 2018), using transfer learning 
to take advantage of AlexNet for such a task. 

Cracks can also be detected within a 3D point cloud by analysing singular features of the points 
belonging to cracks. Crack points usually show lower intensity values compared to those on 
their surroundings, as stated in (Y. Yu et al., 2014), in which the Otsu thresholding method is 
used to select crack candidates. Outliers within the candidates are removed with a spatial 
density filter, as they tend to be dispersedly and irregularly distributed. An algorithm based 
on L1-median is used to generate 3D skeletons representing the geometric structures of crack-
lines. Alternatively, (X. Chen & Li, 2016) proposed the analysis of local elevation jumps 
embedded in the 3D points to detect cracks. This was done applying a high-pass filter to a 
DTM (Digital Terrain Model) raster image to distinguish those elevation changes. 

Another approach for road cracks extraction consists of first generating a geo-referenced 
feature image (GRF image). In (Guan, Li, et al., 2015), the ITVCrack method is introduced, 
consisting on extracting cracks from a noisy GRF image based on the intensity feature via 
Iterative Tensor Voting. 

2.1.1.4 Manhole covers 

Manhole covers can be detected following different approaches, some of which are directly 
related to the techniques detailed above to detect other road elements, like road markings or 
cracks, via feature analysis. (Yongtao Yu et al., 2015) proposed the use of supervised machine 
learning to extract high-order features from a GRF intensity image, and a random forest model 
to learn the probability of appearance of manholes. Both methods combined lead to the 
extraction of manholes. 

2.1.1.5 Traffic signs 

As it is the case for road markings, traffic sign detection and recognition (TSD and TSR, 
respectively) is essential for road monitoring, as well as indispensable for autonomous driving. 
Nowadays, the use of computer vision techniques based on machine learning to detect and 
recognize traffic signs on images is widely extended. A convolutional neural network is used 
in (Jain et al., 2019) as a TSR, adjusting the hyperparameters of the network (namely the 
learning rate and the number of epochs for each layer) via a genetic algorithm and a variation 
of the later involving “ternary crossover operator”. Other machine learning classifiers, such as 
SVM (Support Vector Machine), ELM (Extreme Learning Machine) and k-NN (k-Nearest 
Neighbour) are used for traffic sign recognition in (Gudigar et al., 2019). 

Regarding the detection and classification of traffic signs from point clouds, both radiometric 
and geometric features of points are considered. This approach is followed in (Belén Riveiro 
et al., 2016), starting with the creation of an intensity map through rasterization that first 
coarsely outlines the brightest points of the point cloud, to follow with an optimized threshold 
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that isolates points belonging to traffic signs, which are clustered together and each sign is 
then classified according to its function. 

3D point clouds can be combined with 2D images to increase the semantic information of 
extracted traffic signs, as it is demonstrated in (Mario Soilán et al., 2016) by retro-projecting 
the 3D positions of traffic signs on 2D images captured by RGB cameras. Machine learning 
image analysis techniques can then be applied to recognize traffic sign semantics and classify 
them. 

2.1.1.6 Pole-like objects 

There are other objects placed along roadsides that, just as traffic signs, have singular 
morphologies that allow to separate them from the rest of the point cloud. In (Yan et al., 2017) 
pole-like objects, like traffic lamps, are detected in point clouds (after ground segmentation) 
based on previous knowledge and shape information, and classified with Random Forest. 
Furthermore, (Cabo et al., 2014) introduced a method to first carry out a voxelization of the 
point cloud to regularize it and increase computer performance, and then identify pole-like 
objects through a 2D analysis of the horizonal section of the voxelized cloud. 

2.1.1.7 Trees 

Trees are other type of significant roadside objects to be extracted from point clouds. Their 
non-photosynthetic elements (i.e. trunk and branches) can be clustered together by 
combining points with methods like the one introduced in (Xu et al., 2018), minimizing an 
energy function based on Euclidean distance. Another example of clustering based on 
Euclidean distance is presented in (Guan, Yu, et al., 2015), in which PCA (principal component 
analysis) is used to describe the local point distribution of extracted off-road objects. Then, 
feature vectors are produced for each object classified as tree/non-tree with a SVM algorithm. 

2.1.1.8 Infrastructure information models 

These methods to analyse the road and its assets can be integrated in a framework to produce 
an infrastructure information model, namely a BIM (Building Information Modelling) model 
for infrastructure. In (Mario Soilán et al., 2020), a methodology to process point cloud data is 
presented. This includes ground segmentation, road marking detection and extraction, and 
road edge detection, to output an IFC (Industry Foundation Classes) file that models the road 
alignment as well as the centreline of each lane. The point clouds are processed in a semi-
automated manner, combining automatic processing and manual validation. The generated 
files are compliant with the IFC4.3 schema specification from buildingSMART. 

2.1.1.9 Forest monitoring 

Forest fires are an immense burden to the environment, infrastructure, economy, and most 
importantly, human life around the world. Fires are considered as a significant environmental 
issue because they cause prominent economic and ecological damage. Fire behaviour is highly 
conditioned by vegetation characteristics, and particularly by the amount and spatial 
distribution of fuels. Roads are a key element in forest fire fighting, providing both access to 
wildfires during extinguishing tasks and acting as linear firebreaks that avoid or reduce fire 
spread. These factors can be useful in both fire suppression and prescribed fire operations. 
Nevertheless, the benefits that roads provide for fire prevention and fire management carry 
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an associated maintenance cost (Gucinski et al., 2001). Human-caused fires are initiated by 
accidents, negligence, or arson. Road access is a significant contributing factor in the 
occurrence of this human-caused ignitions (Freden et al., 1974). The 70% of forest fire 
occurred close to main roads, within 500 m of them (Ganteaume et al., 2013). The increased 
ignition risk related to increasing housing and road density may be additionally modulated by 
the vegetation types crossed by roads (Freden et al., 1974). 

Data mining applications such as convolutional neural network, fuzzy metaheuristic 
ensembles, genetic algorithms, etc. became popular for setting optimal combination of forest 
fire related variables, and modelling forest fire susceptibilities (Hong et al., 2018).  (Chamoso 
et al., 2018) proposed that UAVs can be used in fire control due to their ability to manoeuvre 
rapidly and their wide range of operation. Fire detection techniques using computer and 
infrared computer techniques, as well as the hardware systems that drones must be 
incorporated to perform this task. (Sherstjuk et al., 2018) have worked upon tactical forest 
fire-fighting operations based on a team of UAV and remote sensing and image processing 
techniques.  

LiDAR is another common remote sensing technology applied in forestry studies. Although a 
variety of technologies can be used to spatially describe forest biomass distribution, active 
sensors such as Terrestrial Laser Scanning (TLS) (Pimont et al., 2015) and Airborne Laser 
Scanning (ALS) has been proved very useful to characterize the 3D forest structure (García et 
al., 2018; Yunsheng Wang et al., 2016). However, the interception of the laser beam by the 
upper canopy strata may impede accurate understory strata assessment with ALS (Hamraz et 
al., 2017; Kükenbrink et al., 2017). Airborne laser scanning based on unmanned aircraft 
systems has an excellent tree height measurement performance, mobility, and fast data 
acquisition, which make it a very attractive option for forest investigations (Liang et al., 2019). 
The fusion of LiDAR data and spectral imagery has been used to address the limitation of only 
using LiDAR data in vegetation mapping (Su et al., 2016). 

Recent advancements in remote sensing technology have facilitated new approaches to 
studying fire ecology. Of particular interest for fire managers, LiDAR has been incorporated 
into the mapping of fuels (García et al., 2011), assessing burn severity (Kane et al., 2014), and 
monitoring vegetation recovery (Gordon et al., 2017). 

2.1.2 Satellite monitoring 

Since the Copernicus Sentinel-1A launch on 8th April 2018, the publication of works regarding 
infrastructure monitoring started to increase. Interferometric Synthetic Aperture Radars 
(InSAR) are consolidating as a valid tool to observe deformations on the earth's surface; this 
is because the data is supplied for free in different platforms compared with the rest of 
satellites for commercial use. In addition, Sentinel-1A also supposes an evolution compared 
the past Band-C European missions based on the synthetic aperture radar system (SAR), which 
were the European Remote Sensing Satellite (ERS) and the Environmental Satellite (ENVISAT). 
This evolution, apart from improving technology in the sensors, supposes the reduction of the 
temporary review time from 35 to 6 days. With this, images can be obtained with more 
frequency to detect changes on the earth's surface, and to make a more effective and reliable 
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monitoring. In this way, a large number of works demonstrated good results for performing 
infrastructure and forest monitoring. 

2.1.2.1 Infrastructure monitoring 

One of the main applications of satellite data for infrastructure monitoring is the 
measurement of subsidence. In (Delgado Blasco et al., 2019), the measurement of the urban 
subsidence in the Rome metropolitan area was carried out (Figure 1). This work uses the 
method of Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR), which 
consists of comparing a time series of the different interferometric images of the radar. The 
deformations existing in the highway network of the Rome metropolitan area are obtained as 
the differences between images. Deformations are measured with millimetre accuracy (from 
–10 mm to +2 mm). These results are obtained through the SNAP-StaMPS program using the 
Persistent Scatterer interferometry (PSI) technique, which consists on the analysis of pixels 
that remain consistent over the sequence of interferograms. 

 
Figure 1: Average vertical movement rates along motorways, primary and secondary road networks (left); and 

detail of the city of Rome including tertiary, residential and pedestrian roads (right) (Delgado Blasco et al., 2019) 

2.1.2.2 Forest monitoring 

The use of remote sensing techniques to study the forest fire area is a useful way of providing 
information before, during or after a fire. Regarding pre-fire information, the possible 
applications are: fuel type mapping, fire risk evaluation, and beginning determination of 
danger period, among others. During a fire, the information that can be provided by remote 
sensing systems refers mainly to the location of active sources through the use of thermal 
sensors. Finally, post-fire information can refer to affected surface evaluation and the 
monitoring of burned areas over time.  

The most used remote sensing systems for fire ecology research are space-based multispectral 
sensors. Imaging data has become a primary data source for forest fire mapping and 
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monitoring in inaccessible forest regions (Xiao-rui et al., 2005). Because of the requirement of 
high temporal resolution in case of forest fires, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) data are often a primary choice owing to their daily repetitive 
coverage and ability to detect fires in remote regions. On the other hand, the risk to forest fire 
is estimated based on meteorological data or from vegetation indices. The satellite-based 
evapotranspiration rates are a good estimate of fire risk assessment (Vidal et al., 1994). 
Satellite sensors such as SPOT, Landsat TM/ETM and OLI, AVHRR, ERS2, RADARSAT, etc. have 
been used to map the burned areas, change detection, damage, and risk assessment. Yuan et 
al. (Yuan et al., 2017) recently presented the applicability of UAV mounted infrared (IR) 
imaging systems for the automatic detection of fires in forest regions. Vegetation indexes 
including Normalized Difference Index (NDVI), Green Normalized Difference Vegetation Index 
(GNDVI), Normalized Burn Ratio (NBR), and Normalized Difference Vegetation Index 
(NDVIreXn) that implements red edge spectral bands showed high competence in mapping 
post-fire scenarios (Navarro et al., 2017). 

2.2 Inspection and Monitoring of Rail networks 

2.2.1 Terrestrial monitoring 

The monitoring of the railway network, as for the road network, may be done using different 
remote sensing technologies. Although the use of diverse sources of data like RGB cameras, 
thermographic cameras or radar, could be also considered in this section, there are few works 
to this regard. Laser scanning is then presented as the head technology to monitor the railway 
infrastructure. Moreover, it is one of the best technologies to gather exhaustive information 
of the railway line. 

As explained subsequently in Section 3.1.1, there are three types of laser scanning systems: 
terrestrial laser scanners (TLS), mobile laser scanners (MLS) and aerial laser scanners (ALS). 
Depending on the application, the logic is to use a different system. Even though there are 
some works regarding the use of ALS and TLS data for monitoring the railway network, it 
seems appropriate to use MLS since these devices can collect large amounts of data in a short 
period of time and with high resolution. Taking this into consideration, this section is in charge 
of making a summary of the main applications of mobile laser scanning in the railway network.  

2.2.1.1 Railway inventory 

Laser scanning is considered one of the best non-destructive techniques (NDT) for the 
gathering of information regarding the as-is state of the environment. One of its main 
applications in the railway environment is the inventory of the infrastructure elements. One 
of the most recent reviews to this respect is the one presented by (Che et al., 2019), where 
MLS data were used for object recognition and the extraction of their characteristics. 

Continuing with classification methods, several works from the author Arastounia, M. are 
meaningful when talking about heuristic methodologies for inventory purposes in the railway 
environment (Arastounia, 2012, 2015, 2017; Arastounia & Elberink, 2016). In this line of 
research and inspired on these works, (A. Sánchez-Rodríguez et al., 2018) created a method 
for the automatic labelling of railway tunnel point clouds from MLS data. There are also several 
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works regarding the classification of railway point clouds but helped by specific programs for 
post-processing the point clouds under study (Al-Bayari, 2019; Leslar et al., 2010). 

In the recent years, the use of deep learning algorithms with classification ends has been 
increasing. An example of this is the work of (Rizaldy et al., 2018), where ALS data are used as 
input of Fully Convolutional Neural Networks in order to classify ground points. Regarding the 
work with MLS data, (M. Soilán et al., 2020) proposed algorithms for the automatic 
segmentation of point clouds using PointNet and KPConv newural networks, but applied in 
this case to railway tunnels. They use the resulting labels of an heuristic classification method 
(A. Sánchez-Rodríguez et al., 2018) for training the aforementioned neural networks. 

Another rising application is the creation of three-dimensional (3D) models utilising point 
cloud processed data. The use of Digital Twinning and BIM (Building Information Modelling) 
has been evolving in the recent years. They have grown from their exclusive use for buildings 
to its application for large infrastructures (Nuttens et al., 2018). To this regard, (Cheng et al., 
2019) developed a method for the generation of as-is BIM models of railway tunnels using TLS 
data. First, they applied classification algorithms to the point cloud, and then, they estimated 
the modelling parameters in order to create the BIM model. There are more works regarding 
the creation of three dimensional models from LiDAR data, but they are focused on specific 
elements of the railway environment. These are to be described subsequently. 

2.2.1.2 Rail tracks 

One of the most common applications of railway point clouds is the extraction of the rail 
centreline. This information allows to make a good estimation of the location of the railway 
network and its fusion with GIS maps. There are several publications in this field of research, 
working with both ALS and MLS data (Beger et al., 2011; Elberink & Khoshelham, 2015). 

Another important application is the detection of rail tracks. Publications in this regard are 
more common since the inspection of these elements is very common when working with 
laser scanning data, as reflected in Section 2.2.1.5. (Lou et al., 2018) proposed a workflow for 
rail track detection using MLS data from a low cost LiDAR sensor. The methodology is based 
on their physical shape, geometrical properties and reflection intensity values. This work is 
also relevant as it is supposed to process data in real time. In addition, the work developed by 
(Ana Sánchez-Rodríguez et al., 2018) also classifies rail track points from MLS data combining 
the application of heuristic methods with an automatic classifier (SVM, support vector 
machine). 

The creation of 3D models of rail tracks from railway point clouds it is not a new trend (Soni 
et al., 2014; Yang & Fang, 2014)). (Hackel et al., 2015) developed a methodology for the 
classification of rail track points (among others) using template matching algorithms. This 
methodology has proved good results working with data from any laser scanning system. 

Detecting and modelling rails from MLS data based on the properties of the tracks and contact 
wires. The main step for detecting rail track points is to fit a parametric model to them. After 
other processing steps, a mesh model is created (Oude Elberink et al., 2013). 
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2.2.1.3 Power line 

The inspection of the power line in the railway network is essential for the good functioning 
of the service. Before performing inspection tasks in these elements, it is necessary to first 
detect them in the point cloud. One of the main algorithms used to classify power line points 
is RANSAC (RANdom SAmple Consensus) (Fischler & Bolles, 1981). Several authors use this 
statistical method to group cable and catenary points (B. Guo et al., 2016; Jeon & Choi, 2013; 
Pastucha, 2016). A recent work presented by (Ana Sánchez-Rodríguez et al., 2019) showed 
good results when applying this method in railway tunnel point clouds. 

To this respect, (Cserép & Mayer, 2020) made a review of the recent trends when detecting 
power line cables. Then, they propose a method for the classification of power line points 
using a smaller point cloud as seed for growing from the full one. It uses RANSAC and region 
growing, among other algorithms, to label points. Another example of the use of region 
growing algorithms for classifying catenary points was developed by (S. Zhang et al., 2016), 
proposing a self-adaptative growing algorithm. Continuing with the analysis of connectivity 
between points, (Yanjun Wang et al., 2018) presented a workflow where they also used the 
Hough transform for grouping purposes. 

Working with machine learning tools, (Jung et al., 2016) proposed a method for locally 
classifying points using support vector machines. Ten classes were obtained, representing 
each of the elements of the overhead wires. A step forward is given by using deep learning 
algorithms with the same aim. A recent work presented by (Corongiu et al., 2020) proves the 
validity of these algorithms for the classification of railway cantilevers and portal masts. Their 
work is based on a mixed approach: firstly, they select specific areas based on PCA (principal 
component analysis) results (Jolliffe, 1986). Then, a 3D-modified Fished vector-deep learning 
neural net is used to classify candidates. 

Regarding the work with imaging data, (Fu et al., 2018) developed a method for the extraction 
of geometric parameters of the power line to be used as input for the 3D modelling of the 
infrastructure. Continuing with the generation of digital models of the infrastructure, 
(Ariyachandra & Brilakis, 2020b) proposed a novel method for the generation of digital twins 
of the overhead line equipment of railways from ALS data. They restricted the search of wire 
points relative to railway masts detected with a previously developed algorithm (Ariyachandra 
& Brilakis, 2020a), and then converged the resulting power line cable clusters with different 
parametric models to obtain the digital twins. 

2.2.1.4 Signalization 

The use of point clouds for the automatic classification of signalization points has not been 
explored a lot. It is expected that in the coming years, the interest in this point labelling will 
start to arise, as there is a lot of work already developed thanks to the road monitoring 
(Section 2.1.1). Nonetheless, it is worth mentioning the work from (Karagiannis et al., 2020), 
where a method for sign detection is proposed but using RBG or video images. The 
classification is performed using a Faster R-CNN (Convolutional Neural Network for object 
detection). 



             

 

D5.1 – Remote Sensing in Mapping & Inspection 21 

 

2.2.1.5 Inspection 

The monitoring and inspection of the railway line using non-destructive techniques has been 
rising in the recent years, although this is not new. (Zarembski et al., 2014) already presented 
a review of several key track substructure inspection technologies, including the traditional 
ones and also new ones like LiDAR or ground penetrating radar. It is also highlightable the 
application of thermographic cameras for monitoring (Minbashi et al., 2016). A more recent 
review published to this respect is the one by (Falamarzi et al., 2019), where the main 
techniques used to detect damage in railway environments are presented. And later on, 
(Artagan et al., 2020) exposed the most recent NDT for health monitoring of railway 
infrastructures. 

With respect to the use of laser scanning as an NDT for monitoring the railway infrastructure, 
there is not a defined technique to perform this, but some works have been developed to this 
end. The most common elements to be inspected are rail tracks. A methodology using CAD 
models to compare with LiDAR data for rail wear measurements was presented by (P. Chen et 
al., 2017). Continuing with rails condition, (Taheri Andani et al., 2018) proposed the detection 
of different rail surface conditions using indices defined based on LiDAR data. In this direction, 
(Sadeghi et al., 2019) proposed an index for ballast inspection using automated measurement 
systems. 

Some methodologies have also been proposed for clearance monitoring. (Mikrut et al., 2016) 
used MLS data to create a 2D image of different cross sections so that an operator could detect 
suspicious areas. In addition, the work from (Niina et al., 2018) is also significant for visually 
checking the clearance on point clouds. More recently, (Ana Sánchez-Rodríguez et al., 2019) 
proposed a workflow not only for classifying power line points (Section 2.2.1.3) but also for its 
automated inspection on tunnel point clouds, measuring clearance gauge and deflection of 
the catenary cables. Continuing with tunnel point clouds, an algorithm for the monitoring of 
tunnel deformation using TLS data was developed by (Xie & Lu, 2017). They pre-processed the 
point cloud to generate a 3D model of the tunnel and measurements where performed on it. 

2.2.1.6 Forest monitoring 

Wildfire ignition risk increases as the density of urban, road or railway developments do (Vilar 
et al., 2010). Vegetation becomes combustible and the risk of fire increases during periods of 
hot weather. Fires can damage the railway infrastructure and railway authorities are very 
much concerned (Nyberg et al., 2013). This is due to lack of knowledge concerning the status 
of vegetation on and alongside railway embankments. Hence, periodic maintenance actions 
(e.g. inspections, mechanical harvesting, spraying herbicides, etc.) are employed for 
controlling vegetation. 

Manually inspecting vegetation is very a slow and time consuming process, and maintaining 
an even quality standard is also very difficult. An alternative is to use new technologies to 
overcome this issue. The machine vision approach has performed reasonably well for 
detecting the presence of vegetation on railway tracks when compared with a human 
operator (Yella et al., 2013). (Hulin & Schussler, 2005) presented a mounted system based on 
three multi-spectral cameras on a train to generate a vegetation profile and register 
vegetation for efficient vegetation management. There are few recent studies on vegetation 
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detection around railways (Matson et al., 2018; Nyberg, 2016; Yella & Nyberg, 2016). Similarly, 
the road and railway have the same consideration regarding wildfires occurrences (Conedera 
et al., 2015; F. Guo et al., 2016; Molina et al., 2019; Serra et al., 2014). 

2.2.2 Satellite monitoring 

There are not many research works regarding the use of satellite data for monitoring railway 
infrastructure. Nonetheless, (Chang et al., 2017) presented one study of the deformation of 
the Dutch railway network using one stack of C-band SAR images from the satellite Radarsat-
2. The images were acquired between June and August 2015, the repetition frequency of the 
satellite was 24 days. They analysed a total of 213 images, obtaining deformation values from 
± 10 mm per year; in which 4 interest areas with higher deformation values stand out. These 
deformations were analysed in more detail, getting as possible explanation the type of soil 
(hydromorphic soils) supporting these railway lines. 

2.3 Inspection and Monitoring of critical structures 

One example of monitoring of critical structures is the detection of dam subsidence. The Three 
Gorges Dam analysis (Z. Wang & Perissin, 2012), is a demonstration of the possibilities that 
the use of remote sensing presents using Cosmo SkyMed stripmap images from February to 
August 2011. The authors managed to verify the deformation that occurs in the dam with 
SARPROZ commercial software. 

Another applicable example of monitoring is for the case of specific buildings. (Bakon et al., 
2014) made a study of the city of Bratislava using also SARPROZ software and the ENVISAT 
satellite (Figure 2). With this, a deformation rate of -20 mm of the building was obtained, 
caused by one neighbouring construction. These results were obtained by applying the 
persistent scatterer interferometry technique (PSInSAR). 

 
Figure 2: Building affected by the excavation trench of a nearby hotel, September 2007 (Bakon et al., 2014) 
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Lastly, it its highlightable the study about the collapse of the Hintze Ribeiro bridge on 4th March 
2001, in Portugal (Sousa & Bastos, 2013). It is a perfect example of the monitoring of critical 
structures, since it detects the movements produced before the collapse of the bridge (Figure 
3). In order to achieve this, the authors use the SNAP-StaMPS software combining the PSInSAR 
and the small baseline subsets (SBAS) techniques. This last technique is based on making a 
series of combinations of pairs of SAR images, which are characterized by having the lowest 
possible orbital separation, in order to generate a series of interferograms with low spatial 
decorrelation. They used 52 images obtained by the ERS -1/2 satellites between the period of 
May 1955 and December 2000. The deformation rate is quite considerable because the 
maximum velocity detected is approximately 20 mm per year, precisely in the structure of the 
collapsed bridge. This analysis confirms the capacity of the MTI techniques for the monitoring 
of deformations, even using a low resolution satellite like ERS. 

Therefore, it is confirmed that the continuous processing of the InSAR observation could be 
successfully integrated into infrastructure monitoring programs in the implementation of 
early warning systems. 

 
Figure 3: Color-coded average linear deformation rate overlaid on a Google Earth image with the collapsed pillar 

highlighted (P4). The observation geometry is indicated in the upper right corner. Figure generated by viStaMPS 
(Sousa & Bastos, 2013) 

3. Background in Remote Sensing and technologies 

3.1 Remote Sensing Technologies 

3.1.1 Laser scanning systems 

3.1.1.1  LiDAR sensors 

A LiDAR (Light Detection And Ranging) is a type of sensor that is capable of measuring distance 
by emitting laser beams that impact on an objective and bounce back to a receiver. To obtain 
the distance measurement, also known as range, it is necessary to infer it by either registering 
the time that it takes to a backscatter of the laser beam to return (i.e. Time-of-Flight or ToF) 
or the phase difference between the emitted and the received signal, a technique that is 
known as continuous wave (CW) modulation. The amplitude of the returned laser signal allows 
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to calculate its intensity, which is related to the reflective properties of the surface of an 
impacted object. Some receivers are as well able to collect multiple echoes from a same 
emitted beam, which often occurs if the impacted object is translucent/transparent or 
disperse (like canopy of trees). 

Typical LiDAR sensors are capable of emitting hundreds of thousands of laser beams per 
second, registering a point every time the laser impacts an objective, which is referenced 
based on the measured distance and the instantaneous orientation of the sensor. Therefore, 
they have the capacity to scan the environment rapidly and with great resolution. To measure 
distances in different directions, a LiDAR sensor needs to be able to change its orientation, so 
it is mounted onto an opto-mechanical assembly based on a spinning mirror that deflects the 
laser beam in 360°. Furthermore, making the sensor rotate around an axis perpendicular to 
that of the spinning mirror, is possible to guide the laser beam in every direction of the 3D 
space, describing a sphere around it. This is the case for TLS (terrestrial laser scanning) sensors, 
which remain fixed in the same position during the whole acquisition process, while MLS 
(mobile laser scanning) systems usually obtain multiple 360° scans along the trajectory of the 
vehicle in which they are mounted on. ALS (aerial laser scanning) systems create scans of the 
ground by combining their movement with different sweeping patterns. The set of registered 
points in 3D coordinates is known as a point cloud. 

3.1.1.2 Positioning and navigation 

In order to register the acquired point cloud to a global coordinate system, the local 
coordinates of the point cloud must be related to a global positioning system. Comprehensive 
positioning and navigation systems often combine several technologies to acquire and 
maintain accurate position information. 

 GNSS (Global Navigation Satellite Systems) calculate their position in relation to a set 
of satellites within a constellation; usually 3 or 4 satellites are enough for positioning, 
depending on the operational mode of the GNSS. Distance between each of the 
satellites and the receiver is measured by estimating the propagation time of the 
transmitted signals. The main GNSS systems available are GPS (Global Positioning 
System; operated by the US Air Force), Galileo (EU) and GLONASS (Russia). 
GNSS technology count with some weak points. For instance, if the receiver is not 
within the line of sight of enough satellites, it would be impossible to correctly 
determine its position. This situation is known as an outage and is often produced in 
urban areas due to the amount of structures tan can obstruct the satellites’ signals, or 
deviate them form their intended path, which is known as multipath propagation, 
causing erroneous distance measures. 

 IMU (Inertial Measurement Unit) calculates the position and orientation of the system 
using accelerometers and gyroscopes, respectively. Displacement is calculated by 
integrating the measured acceleration into velocity and then into position and 
combining it with the registered orientation. As displacement is measured in relation 
to the starting point of the system’s trajectory and thus, it does not rely on external 
references, the cumulative error in the estimation grows with every iteration. Because 
of this, IMUs are often integrated with a GNSS to introduce correction in the position 
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using a global reference system. In turn, as IMU reference system is internal, 
positioning is not interrupted during GNSS outages. 

 A DMI (Distance Measurement Unit) can be mounted on a vehicle to measure its 
displacement by counting the rotations of a wheel and calculating the travel distance 
from its diameter. As an internally referenced system, like the IMU, it also accumulates 
error as time goes by, so it is used as a support system for the GNSS and IMU. 

3.1.2 Imaging systems 

A digital imaging system is a device capable of registering a scene into a digital file. The process 

comprises several steps.  First, imaging optics focus the scene onto the image sensor, which 

consists of a 2D array of pixels (El Gamal & Eltoukhy, 2005). Each pixel contains a 

photodetector that converts the incident light into photocurrent, and readout circuits that 

convert the photocurrent into electric charge or voltage to read it off the array. To produce 

colour images, a CFA (Colour Filter Array) is placed on top of the pixel array, making each pixel 

to produce an electrical signal corresponding to a single colour. The light is filtered by 

wavelength range, giving information of the light intensity in the wavelength region of a 

certain colour. A common CFA configuration is the Bayer filter, a mosaic built up from 2x2 sub-

mosaics with 1 red filter, 2 green and 1 blue. A micro-lens array is placed on top of the CFA 

array to increase the amount of light incident on each photodetector. 

An Analog-to-Digital Converter (ADC) digitalizes the analogue signal read out from the pixels, 

so it can be processed. The full colour image is constructed from the under-sampled colour 

channel outputs from the CFA, via a demosaicking algorithm. Further processing includes 

white balancing, colour correction and mitigation of some adverse effects caused by faulty 

pixels and imperfect optic components. The processed image can be then compressed and 

stored. 

3.1.3 Radar systems 

Currently, remote sensing technology has evolved to achieve good results for the monitoring 
of infrastructures and not only for the detection of natural geohazards. This was possible by 
the constant private and public inversions in the satellite system developed. In this sense, the 
Copernicus Program supposed a true revolution in remote sensing analysis since it meant 
having images accessible by any citizen and any organization around the world for free, 
complete and open access. There are two platforms to access to the data and information 
services of Copernicus according to user preference: DIAS or Conventional Data Hubs. 
However, it is necessary to clarify that the resolution of the data offered by the Copernicus 
Program is not always the most suitable for infrastructures; but their free access has 
encouraged the development of applications to improve the usability of these images. 

Copernicus Program is based on a series of satellite missions with the name of Sentinels. From 
2014, these satellites provide satellite data operationally for numerous applications, including 
the collection of information about precision agriculture, soil movement, algae monitoring, 
water management, forest monitoring, climate monitoring, etc. Inside the Sentinel 
constellation, in the infrastructure field, the satellites used are Sentinel 1 and 2 satellite pairs. 
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Table 1: Characteristics of Sentinel-1 and Sentinel-2 satellites (European Space Agency, 2014, 2015) 

Satellite Data Polarization/Bands Launching Resolution 

Sentinel-1 Radar VV, HH, VV+VH, HH+HV 
2014 and 

2016 
5-20 meters 

Sentinel-2 Multispectral 10 bands 
2015 and 

2017 
10-20-60 
meters 

Sentinel-1 is based on Synthetic Aperture Radar (SAR) that, through the Interferometry 
technique (InSAR) detects deformations on surfaces comparing several images. 

In order to obtain good results in the infrastructure monitoring the MT-InSAR technique 
(Multi-temporal Interferometric Synthetic Aperture Radar) is applied. It focuses in monitoring 
the deformation through the years in different epoch. For that, multiple time series of SAR 
images are used. With this, it is possible to reduce numerous errors such as phase 
decorrelation, or the error in the unwrapping of the phase and the atmospheric noises, typical 
of the capture and processing of the images. 

 
Figure 4: InSAR basic concept of comparison over time (Sousa & Bastos, 2013) 

Sentinel-2 is a mission consisting of a constellation of 2 polar-orbiting multi spectral satellites 
for the monitoring of Earth. It provides images for vegetation, soil, water and for emergency 
services. It could process images by comparison and detect changes in infrastructures applying 
different methods and applications. These detection methods can be simple detection, 
normalized index change detection, and detection by supervised classification. However, in 
order to make a more accurate infrastructure analysis, it is necessary to use commercial 
images with higher resolution. For that, the use of Sentinel-1 radar data is more suitable for 
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infrastructure monitoring, since it is possible to have millimetre precision with the help of the 
specific applications oriented to these studies. 

3.2 Remote Sensing Platforms 

3.2.1 Land-based surveying 

To perform a survey over a vast area, a mobile platform consisting of a vehicle integrating the 
sensors needed for the data acquisition, known as an MMS (Mobile Mapping System) is the 
best option. The solution to be used by SIRMA Project is the Lynx Mobile Mapper M1 platform 
from Optech (Teledyne Optech ©, 2019), comprising two LiDAR sensors, an integrated 
positioning solution (Applanix POS LV-520 IMU and two Trimble GNSS antennas) with a DMI 
to assist the other systems and, additionally, a Ladybug5 360° camera. This camera was 
installed to capture images to add semantic information to the acquired point clouds. This 
camera has six Sony IMX264 CMOS sensors with a resolution of 2048x2464 pixels.  

 
Figure 5: Sensors mounted on the survey vehicle 

3.2.1.1 LiDAR sensors 

There are several LiDAR sensors available on the market, with different configurations, 
operation modes and performances. The following list includes the specifications of models 
from some of the most relevant manufacturers. 

 Optech LYNX M1. It is the sensor model of those used in our MMS. This is a 2D LiDAR 
sensor based on the Time-of-Flight measuring method with 360° field of view. The scan 
frequency is programmable between 80 and 200 Hz, achieving a maximum PRR (Pulse 
Repetition Rate) of 250 kHz. It is capable of detecting up to 4 measurements from a 
single laser pulse. The maximum measuring range, when aiming for targets with low 
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reflectivity (20%) is 200 m. The range precision is 8 mm and has 5 cm of absolute 
accuracy. 

 RIEGL VUX-1HA. It is a 2D Time-of-Flight type sensor with a 360° field of view and a 
scanning frequency from 10 Hz up to 250 Hz (rotations of the sensor per second). The 
maximum PRR of the laser is 1000 kHz, meaning that it is capable of registering 1 
million points per second. It offers a maximum measuring range of 420 m for high 
reflective objectives working with a PRR of 300 kHz. At a 30 m range, it achieves an 
accuracy of 5 mm and a precision of 3 mm. 

 Sick LMS 511. This model is also a 2D ToF LiDAR, with a horizontal field of view of 190° 
and a scanning frequency between 25 and 100 Hz. This sensor has a PRR of 19 kHz 
operating with a maximum range of 80 m or up to 25.5 kHz, reducing the range to 65 
m.  

 Velodyne Alpha Puck. This sensor operates differently, as it emits an array of laser 
beams (128, in the case of the Alpha model) arranged in a non-linear manner along a 
40° arc. This array of lasers is rotated around the vertical axis of the device to offer a 
360° field of view, being able to capture around 2.4 million points per second. The 
maximum measuring rate is 300 m. 

 FARO Focus 350. This 3D sensor has vertical and horizontal fields of view of 300° and 
360°, respectively, measuring range in 3D at a distance of up to 350 m through CW 
modulation. It is capable of acquiring up to 976 thousand points per second. 

3.2.2 Satellite platforms 

Platforms are referred to the vehicles where the sensors are placed to emit and register the 
electromagnetic radiation in order to capture Earth surface images. Historically, can be 
referred as both manned and unmanned aircraft and satellites. In this document, only the 
most important characteristics of the principal satellites that are currently available (both 
optical and radar) are to be mentioned. The difference between radar or optical satellite is 
that radar images are captured by active systems, this is, the satellite emits one energy beam 
and then catches the part that is reflected. By comparison, optical images are captured by 
passive systems, this is, the satellite detects the radiation that emits or reflects the object of 
study since the satellite has multi-spectral sensitivity. This means that it catches data from 
different spectral bands simultaneously. Besides, radar satellites unlike optical satellites do 
not depend on the atmospheric conditions; they register the data at any time, since they emit 
their own source of energy and do not require solar energy. 

The spectral resolution of the radar images is changeable, and the capture range is not 
measuring in wavelengths of the electromagnetic spectrum but in frequency bands. 

In radar images, the displacements of the relief happen in the opposite way instead of making 
the normal shadow of an optical satellite. In addition, the radar images the top parts of a 
structure can reflect signals before the base, inasmuch as the displacement of the relief is 
getting closer to the nadir instead of moving from it like the optical satellite. 

In the terrain captured by the radar satellite, when the slope of the terrain is bigger than the 
depression angle, the radar shadows hide the characteristics in scope. Therefore, the signals 
from the slopes that point out the radar antenna will come back very weak. This causes dark 
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or black areas in the radar image, in comparison with the optical images whose main problem 
is the presence of clouds in order to make an effective image analysis. 

Lastly, it is worth mentioning that due to the constant and high availability of data received by 
the platforms of different programs of the space agencies, it is important to perform 
calibration-validation (CAL-VAL) programs on them to guarantee the reliability of data. This 
CAL-VAL process starts before the launch of the platform since it is the only opportunity to 
directly calibrate and characterize the satellite physically. After the launch, this process 
indirectly continues to obtain Level 1 and 2 data reliable and calibrated. The CAL-VAL of one 
mission includes the sensor calibration, verification of the algorithm, geophysical data 
validation, and the intercomparison with other missions. All this leads to the quantification of 
uncertainties. This process can be improved by comparing multiple independent sources so 
that confidence in the veracity of the data is generated (Sterckx et al., 2020). 

 
Figure 6: Representation of the necessary steps for CAL-VAL's integral activities for satellite missions on a 

sustained basis. Green boxes indicate specific CAL-VAL activities, blue boxes indicate steps to produce 
geophysical satellite data products, and red lines reprocessing activities (Sterckx et al., 2020) 

3.2.2.1 Optical satellite technology 

Only those satellites that are still in operation and with a very high resolution will be analysed 
in this section. This is because of the abundance of commercial satellites for the detection of 
optical images, which are key for infrastructure monitoring: 

 WorldView: Consists on a satellite series for Earth observation in high resolution, with 
spatial resolution from 0.31 m to 5 m in panchromatic mode and 1.24 m to 1.84 m in 
multispectral mode with a frequency of passes not exceeding 2 days, depending on 
each satellite. It is a Commercial Product. 

 Pléiades: It is a constellation of 2 satellites in coordinate orbit. Its principal mission is 
the Earth observation in high resolution, furthermore, contributes substantially in the 
disaster monitoring. With a frequency of passes approximate every 4 days and one 
spatial resolution of 0.5 m in panchromatic mode and 2 m in multispectral. 
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 RapidEye: It is a constellation of 5 satellites for frequent ground observation, it is a 
Commercial Product. With a frequency of passes approximate every 3 days and one 
spatial resolution of 6.5 m in multispectral. 

 Satellite Pour l’Observation de la Terre: It is a 2 operative satellite series; it is a 
Commercial Product. For Earth observation in high resolution, furthermore, 
contributes substantially the disaster monitoring. With a frequency of passes 
approximate every 4 days and one spatial resolution of 1.5 m in panchromatic mode 
and 6 m in multispectral. 

 Deimos: Consists in a satellite series for Earth observation. It is a Commercial Product. 
With a frequency of passes approximate every 2 days and one spatial resolution of 
0.75 m in panchromatic mode and 4 m in multispectral. 

The constellation of Sentinel-2 is a platform that provides free, systematic and open data. Its 
main mission is the land and vegetation observation. The Copernicus Sentinel-2 is a 
constellation of two satellites, Sentinel-2A and Sentinel-2B. They are in polar orbit placed in 
the same synchronous orbit with the sun, in phases of 180° from each other. The main 
objective is monitoring the condition of the Earth surface. This is possible that’s to its wide 
observation band (290 km) and high review time (10 days at the equator with one satellite, 
and 5 days with 2 satellites in cloudless conditions, resulting in 2-3 days at mid-latitudes). The 
covertures limits are about the latitude 56° South and 84° North. In addition, it has a spatial 
resolution of 10 m, 20 m and 60 m (in the spectral range VNIR to SWIR) to identify constant 
special details with 1 ha as minimum unity of mapping. 

The Sentinel-2 products available for users are a compilation of elementary granules of fixed 
size and with a single orbit. A granule, also called mosaic, is a 100×100 km2 orthoimage in 
UTM/WGS84 projection. The UTM system (Universal Transverse Mercator) divides the Earth 
surface in 60 zones. Each UTM zone has a vertical width of 6° in longitude and a horizontal 
width of 8° latitude. Therefore, the granule is the minimum partition indivisible of one product 
(that contains all the spectral bands possible). 

The analysis of the radiometric data quality is done by the specific Expert Support Laboratories 
(ESL). The quality requirements of the radiometry in the level 1 are: 

 Absolute radiometric uncertainty: 3% (target), 5% (threshold) 

 Relative radiometric uncertainty between bands: 3% 

 Multi-temporal relative radiometric uncertainty: 1% 

 Accuracy of linearity knowledge: 1% 

 Channel-to-channel interference: < 0.5% 

 Modulation Transfer Function (MTF): 0.15 to 0.3 (for 10 m bands) and < 0.45 (for 20 m 
and 60 m bands) 

The objective of absolute radiometric precision is the 3%. To guarantee this high-quality 
radiometric performance, an integrated full-field and full-pupil diffuser is used. 

Knowing the band equivalent wavelength is also very important because an error of 1 nm 
induces errors of several percent in the reflectance value, especially in the blue part and in 
the near-infrared region of the spectrum. The equivalent wavelength is known with an 
uncertainty of less than 1 nm. In the same way, an error in the absolute calibration 
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measurement affects in the precision of the physical value. For this sensor, the calibration 
precision between bands is 3% and the multi temporal calibration is about 1%. Furthermore, 
the non-linearity of the instrument response is more than 1% accurate and the channel-to-
channel crosstalk is less than 0.5%. 

The image quality depends on the MTF system, and has a value of about 0,15 and 0,3 in the 
Nyquist frequency for spectral bands with spectral resolution of 10 m and 20 m, and less of 
0,45 for spectral bands with spatial resolution of 60 m. 

The quality requirements of the geometric in the level 1 are: 

 Absolute a priori geolocation uncertainty (before doing any processing): 2 km 3σ 

 Absolute geolocation uncertainty: 20 m 2σ without GCP and 12.5 m 2σ with GCP 

 Multi-temporal recording: 0.3 2σ pixels, including compensation for the effects of 
terrain height variation with an SRTM-class precision DEM and when image-to-image 
correlation is applied to data in the same spectral band 

 Multispectral recording (for any two spectral bands): 0.3 pixels 3σ 

All this performance requirements for the final data products are verified and validated by 
process and algorithms on board and on the ground corresponding to CAL-VAL activities that 
are responsibility of SENTINEL-2 Mission Performance Centre (MPC). 

3.2.2.2 Radar satellite technology 

There are several satellites put into orbit of for the detection of radar images (Figure 7) and 
their data can be accessed, although being most of them for private use. Currently, only the 
constellation Sentinel-1 offers its data for free. Therefore, its characteristics are to be 
described more detail in this section. 

 
Figure 7: Main Radar platforms, detailing those that operate with free access (NASA, 2015) 
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In this way, focusing on the platforms that are currently operating, the following private 
satellites stand out: 

 TanDEM-X: Its main objective is the Earth observation in all kinds of weather, including 
the vigilance and the management of the emergency. Specifically designed for the 
Digital Elevation Model (DEM) of 12×12 m in the Earth surface with vertical precision 
less than 2 m by interferometry with TerraSAR-X. In addition, it has contributed 
significantly to the temperature-humidity survey. Works in X-Band at 9.65 GHz, in 
spotlight mode have one Ground sampling distance (GSD) of 3 m. 

 RadarSat-2: Its main function is the multi-purpose SAR observation, specially the ice. It 
works in C-Band at 5.405 GHz and with one resolution of 1×3 m in spotlight mode. 

 COSMO-SkyMed: Its main objective is the vigilance and the management of the 
emergency. It works in X-Band at 9.6 GHz with a scan width of 10×10 km in spotlight 
mode and a geometric resolution of 1 m. 

 ALOS-2: Its main objective is terrestrial observation, apart that has contributed 
substantially to the observation of the oceans. It works in the L band at 1.2 GHz and 
with a resolution of 3 m × 1 m in spotlight mode. 

 SEOSAR / Paz: Its main objective is the vigilance and the management of the Earth, 
furthermore that has contributed substantially to the temperature-humidity survey 
and the detection of high precipitations. It works in X-Band at 9.6 GHz with a resolution 
in spotlight mode of 3 m × 3 m (Simple pol.) And 6 m × 6 m (Dual pol.). 

 SAOCOM: Its main objective is the hydrological study and the Earth observation, apart, 
that has contributed substantially to the vigilance and the management of the 
emergency. It works in the L band at 1.275 GHz and with a resolution of 10 m × 5 m in 
spotlight mode. 

 RCM: Its main function is the multi-purpose SAR observation, specially the ice, apart 
that has contributed to the vigilance and the management of the emergency. It works 
in C-Band at 5.405 GHz and with a resolution 3 m in Very high-resolution mode. 

Nowadays, Sentinel-1 constellation is the only platform that provides free, systematic and 
open data. Its main mission is the multi-purpose, oceanic and land observation in high 
resolution and in all kinds of weather. Sentinel-1 is composed of a constellation of two 
satellites, Sentinel-1A and Sentinel-1B, that share the same orbital plane with an orbital phase 
difference of 180°. The mission provides an independent operative capacity for continuous 
radar mapping of the Earth with improved visit frequency, coverage, punctuality and reliability 
for operational services and applications requiring long time series. 

Regarding its technical characteristics, it has: 

 Synchronous near polar orbit with the sun and repeated 12-day cycle 

 4 operational modes: 

 Stripmap mode (SM): 80 km swath, 5 m×5 m resolution, single-look 

 Interferometric Wide Swath mode (IWS): 240 km swath, 5 m×20 m resolution, 
single-look 

 Extra-Wide Swath mode (EWS): 400 km swath, single-look 
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 Interferometric Wide Swath mode (IWS): 240 km swath, 25 m×80 m resolution, 
3-looks 

 Wave mode (WM): 20 km x 20 km, 20 m×5 m resolution, single-look 

 Dual polarization for all VV + VH or HH + HV modes 

Images for posterior analysis can downloaded through different free platforms. Level 1 Single 
Look Complex (SLC) products consist of SAR data, which are focus and georeferenced using 
orbital data and satellite attitude, and provided in zero Doppler tilted range geometry. The 
products include a single aspect in each dimension using the full bandwidth of the 
transmission signal and consist of complex samples that preserve phase information. 

The products verification and the instrument processing (IPF), covers: 

 Verification of the L0, L1 and L2 product format and main annotations 

 Product family consistency, for example measurement consistency check for GRD HR, 
FR and MR 

 Verification of the main processing algorithms: 
o Processing algorithm (Doppler estimation, focus, terrestrial range projection, 

deburring, stripe stitching) 
o Radiometric correction (antenna elevation patterns, TOPS scalloping, loss of 

range extension, etc.) 

 IPF standardization: 
o Checking Image Dynamics and IPF Gain Settings 
o Radiometric sub-fringe fusion 
o Product performance evaluation: 

 Point target impulse response function analysis (spatial resolution and 
side lobes) 

 Ambiguity analysis (range and azimuth) 
 Radiometric resolution and equivalent number of loss measurements 
 Evaluation of the radar cross-section equivalent to noise 
 Geometric evaluation 

 Burst timing evaluation 

The L1 product calibration comprises: 

 Absolute and relative radiometric calibration 

 Polarimetric calibration 

 Geometric calibration 

The L2 geophysical validation comprises: 

 Verification of geophysical variables against independent external measurements such 
as modal data, buoys or other source of EO data 
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4. Monitoring Scenarios in the Atlantic Area 

4.1 Flooding-related events in Portugal / Sea level 

4.1.1 Adverse events 

Because cities are supported by impermeable soils, they have insufficient drainage capacity, 
which makes them more prone and vulnerable to urban flooding. This may be due to the 
increase in the intensity of the rains or to the rise in sea level. Historically, in Portugal, the 
natural threat that causes the greatest human damage is flooding. However, it is difficult to 
quantify material damage, since there is only information for very specific extreme events. 
One of the largest events occurred in the Lisbon Metropolitan Area (in which the following 
municipalities are included: Amadora, Cascais, Lisbon, Loures, Mafra, Odivelas, Oeiras, Sintra, 
Vila Franca de Xira, Alcochete, Almada, Barreiro, Moita, Montijo, Palmela, Seixal, Sesimbra 
and Setúbal) on February 18, 2008 (Leal et al., 2019). This Metropolitan Area is the one with 
the largest population in Portugal, so the risk of flooding or rising sea has a negative influence 
on the infrastructure network. 

These extreme climatic events can cause numerous risks in the infrastructures such as the 
generalized interruption to the entire transmission network (Duy et al., 2019). Therefore, it is 
necessary to continuously monitor the state of the infrastructures in these areas due to their 
increasing vulnerability caused by climate change. To carry out effective monitoring, it is 
interesting to use a combination of techniques that can say how the current state of the 
infrastructures is presented. These techniques can be performed by total station, GPS, LiDAR, 
etc., but they generally tend to be related to a higher labour cost. That is why the InSAR 
technique is presented as a good monitoring alternative since it manages to analyse a very 
large study area with much lower costs and with good precision, in addition to the great 
availability of data from the past compared to those carried out with the other techniques 
(Strozzi et al., 2001; Suresh & Yarrakula, 2018). 

4.1.2 Evaluation of scenarios 

The objective is to demonstrate the use of the Mt-Insar technique for infrastructures 
monitoring. With this, a persistent Scatterer map will be obtained, in which each persistent 
Scatterer will give information about how much that point has moved over time. The map 
indicates the areas where displacements have occurred in the study structures, so that a 
better assessment can be made when making decisions in this regard. 

The study area is the area from Lisbon to Cascais where there is both a road network (N6) and 
a railway network (Línea CASCAIS — CAIS DO SODRÉ) bordering the mouth of the river Tagus 
and the Atlantic Ocean, so this area is ideal for studying how events related to floods can affect 
infrastructures. 
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Figure 8: N6 Road and CASCAIS - CAIS DO SODRÉ train network Map (Forest-GIS, 2019) 

4.2 Wildfires in Portugal 

4.2.1 Adverse events 

In the last decades, Europe registered a high number of fires and burnt area with different 
spatial and temporal trends as the result of human/driven fuel transformations and climate 
change (Vilar et al., 2016). Despite its smaller land area in comparison with other 
Mediterranean countries, Portugal is the European country with the highest total number of 
fires and the second largest total burnt area (Schmuck et al., 2015).  The distribution of fire in 
Portugal presents a high spatial-temporal variability, being weather and climate variability the 
main drivers of the temporal distribution. The Mediterranean type of climate of mainland 
Portugal broadly controls the fire incidence’s temporal and spatial variability (Parente et al., 
2018). The occurrence of extreme weather (e.g., heat waves) and climate variability events 
(e.g., drought), which also tend to be more frequent and intense during the summer fire 
season, are main contributors to his sharp seasonal character of fire incidence in Portugal 
(Tonini et al., 2017). 

The different subtype of climate in northern and southern Portugal also helps to understand 
why most of number of fires and burn area are located at north of the Tagus river. (Catry et 
al., 2007) studied the distribution of fire ignitions between 2001 and 2005 in Portugal and 
concluded that most of the fire ignitions were intentionally caused and concentrated in the 
most populated municipalities of the north and centre littoral areas. In the same way, (Parente 
et al., 2018) concluded that northern regions of the north and centre tend concentrate most 
of the fire incidence. 

While forest fires became common place in the Portuguese continental territory, the events 
of 2017 are described as a new breed of fires, generating harsher consequences and damage. 
The wildfires of 2017 were one of the worst disasters to affect Portugal, with more than 
275.845 hectares burnt from a yearly total of 424.000 hectares (Departamento de Gestão de 
Áreas Públicas e de Proteção Florestal (2017), 2017). In 2017, for the first wave of forest fires, 
most of the registered fatalities occurred when people attempted to flee from their homes by 
car, being caught by smoke and flames in main roads (Viegas, 2018).  
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4.2.2 Evaluation of scenarios 

In 2018, the Southern region in Portugal was the most affected by forest fires.  The literature 
retrieval will be considered for the definition of scenarios in the Portuguese pilot. Most of fires 
were registered in north Portugal. For this reason, the location selected was in Viana do 
Castelo district. 

The focus of this pilot is to enhance the efficient management and mitigation of wildfire by 
developing fire risk maps around infrastructure networks as a short-term decision making.  

 Generation of fuel and flammability models influencing in forest fire risk. 

 Generate vegetation continuity covers and apply forest fire risk weather index based 
on the weather conditions. 

 Short-term decision making over vegetation. 

 Report on fire risks and establish the recommendations to road managers focusing on 
mitigation measure or actions. 

The Pilot will take place in Portugal in the district of Viana do Castelo. It includes railway and 
road transportation modes (Figure 9). The Pilot was chosen due to the suffered forest fires in 
the last three years located in the vicinity of the railway and road network. In relation with the 
wildfires, the total area burnt in the years 2017, 2018 and 2019 were 425 Ha, 109 Ha and 690 
Ha, respectively. Regarding the road section, it includes six sections which cover a total length 
of 25 km.  Similarly, the railway area is subdivided in 3 sections of 16 km. 

The information is organized as shown in the following scheme: 

 Road: Sections 1, 2, 3, 4 and 7 are secondary routes with a length of 14 km, 5 km, 5.5 
km, 900 m, and 6.8 km, respectively. Sections 5, 6 and 8 are primary routes with a 
length of 6.4 km, 2.7 km, and 1.2 km, respectively. All sections are in Valença district 
except for section 1 is in Paredes de Coura district. 

 Railway: Section 1 (ID: 96485), section 2 (ID: 96497), section 3 (ID: 96319) and section 
4 (ID:96488). All sections are in Valença district. 
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Figure 9: Pilot area location in Viana do Castelo, Portugal 

5. Data Acquisition Protocols for the Monitoring of critical 
infrastructures in the Atlantic Area 

This section presents a description of the data acquisition protocols to be followed depending 
on the remote sensing technology used of the ones exposed in Section 3. A first description is 
done for the terrestrial-based platforms, including not only protocols but also significant 
information needed for the performance of a survey. Then, a similar structure is followed for 
satellite technologies. 

 

5.1 Terrestrial-based platforms 

This section describes the equipment necessary to perform a survey using terrestrial-based 
platforms. For the case of when it is necessary to obtain infrared data and/or RGB images, the 
equipment will be integrated with the mobile mapping system (MMS). Because of that, the 
protocols of these devices are explained together with the ones for the MMS. 

5.1.1 Equipment 

The mobile mapping system used in this project to gather LiDAR data is a Lynx mobile mapper 
(Lynx M1), from Optech. It controls four LiDAR sensors and two optional cameras, calibrated 
for the passive gathering of images. The operator controls the operations through a laptop 
connected to the command and control rack. The mobile mapper is usually combined with 

Note: Some information exposed in this section has been gathered from the datasheets 
of the products involved. 
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different sensors so that other data can also be obtained. These sensors are placed in a 
platform on top of the vehicle, which has been developed by University of Vigo together with 
Optech. This set can be attached to a van, a wagon or a draisine, considering that the total 
weight is about 100 kg. 

An essential parameter to be monitored is the position of the scanning system. This is 
performed through the combined use of: 

- Global navigation satellite system (GNSS) 
- Inertial measurement unit (IMU) 
- Distance measurement indicators (DMI) 

The positioning system available in this equipment is from APPLANIX (POS LV 520) and the 
GNSS receivers from TRIMBLE. With the coordinated use of these positioning devices it is 
possible to obtain the absolute location of the vehicle with respect to a global coordinate 
system (i.e. WGS84). Moreover, the LiDAR system stores the relative position of objects with 
respect to the MMS in a local coordinate system. 

In addition, since the vehicle in which the system is installed is moving, it must follow a 
predefined trajectory while the scanner is registering data. This trajectory is also stored as a 
dense three dimensional point cloud in a global coordinate system. Each point represents 
position of the scanner when it is synchronised with the navigation system. 

5.1.2 Hardware 

5.1.2.1 Hardware installation 

LiDAR. LiDAR sensors are installed on the frame of the MLS system, placed rear on the roof of 
the van, besides a box containing the INS and LiDAR rack in which the sensors and antennas 
are connected. The frame is covered with a protective shell, and both LiDAR sensor windows 
are protected with metallic covers that must be removed before each acquisition, checking 
for condensation on the windows and waiting to warm up if necessary. The laser emitted by 
the Lynx system is classified as “Class 1 Laser Product”, meaning it is sight-safe according to 
IEC 60825-1 rule. 

 

Figure 10: Lynx laser scanner 

Antennas. The GNSS antennas must be mounted with a minimum distance between them (at 
least 1.5 m, although the manufacturer recommends 2 m) to obtain a suitable accuracy. 
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Because of this requirement, the secondary antenna is placed in the front part of the roof of 
the van, as the primary antenna is fixed on top of the MLS shell. 

 

 

Figure 11: Secondary GNSS antenna 

DMI. The DMI must be installed on one of the non-directional wheels of the vehicle (thus, on 
the rear) with the provided bracket onto the bolts of the wheel’s rim. The bracket has a rod 
attached to it, that must be slid through a plate on the side of the van, above the wheel, to 
maintain the DMI stabilized. 

 

Figure 12: DMI mounted on the wheel 

Control rack. The LiDAR rack, external RGB or thermographic cameras, DMI and other 
accessories are connected to the control rack, which is placed inside the vehicle and stores 
the information collected during the acquisition. A PC is connected to the rack, serving as an 
interface method and running the acquisition and control software. 
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Figure 13: Lynx control rack, installed in the floor inside the vehicle 

360 camera. A camera can be installed to obtain 360° images. The camera is mounted on top 
of a pole on the centre of the vehicle’s roof, at a certain height to avoid occlusions caused by 
the rest of the equipment. 

 

Figure 14: Ladybug 360 camera 

Cables. All cables must be firmly connected and, in the case of the devices mounted 
occasionally on the outside of the vehicle, disconnected after finishing. 

5.1.2.2 Parameters setup 

Lever arms between the INS (Inertial Navigation System), the reference frame centre, and all 
other sensors must be measured and introduced in the system for correctly referencing the 
collected data. 

5.1.3 Survey protocols 

This section describes the necessities to be considered when performing a survey with a 
mobile mapping system. 

The most important requirement is to plan the survey before its performance. This will ensure 
the obtention of the best quality of data depending on the needs of each case study. The 
planification involves: 

- Selection of equipment 
- Preparation of the equipment 
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- Calibration of each device 
- Selection of working parameters 
- Definition of the trajectory 

5.1.3.1 Meteorological conditions 

Weather conditions must be the proper ones in order to obtain good results. Water drops and 
dust largely affect the measurements of the laser scanner, since it works in the visible light 
range. In addition, reflections may also be an issue when working with direct sunlight. For all 
these reasons, the better option would be a cloudy day without any fog or rain. This will help 
avoiding water drops or vapour affecting the measures or noise due to sun reflections. 

Laser scanning surveys can be performed at any time of day or night, since LiDAR sensors are 
active. Depending on the data requirements, it would be necessary to do the gathering of data 
during the day to obtain RGB images, or due to navigation issues, among others. While the 
night surveys could also be useful for other aspects like reducing the traffic flow, reducing the 
interruptions of service, etc. 

Lastly, although it does not depend that much on the meteorological conditions but on the 
time of the year, it is recommended to study the vegetation surrounding the survey area. The 
worst case for a survey is the existence of vegetation causing occlusions of relevant parts of 
the infrastructure (Filgueira et al., 2017; Belén Riveiro et al., 2015). 

5.1.3.2 Accuracy improvement 

The accuracy of the gathered data depends on several factors: 

- Geometrical characteristics of the scenario 
- Equipment 
- Speed of the vehicle 

The calibration of the equipment must be done before the data gathering and ensuring some 
conditions. A minimum of 200-300 m outdoors is necessary for calibrating the sensors before 
entering a tunnel or a railway environment. The accuracy of the trajectory can also be 
improved by stopping the moving platform for at least 10 minutes at the beginning and ending 
of the itinerary, so that the GNSS can get a good coverage. Finally, the vehicle carrying the 
platform of the sensors must be moving at a constant speed, with a maximum of 30-40 km/h. 

5.2 Satellite resources 

5.2.1 Existing EU programs 

To get a global vision of the Earth health condition through the Global Earth Observation 
Systems of Systems (GEOSS) it is intended to facilitate and standardize the access to satellite 
data of the different information sources. For that purpose, the European Union, based in a 
satellite constellation through the European Space Agency and under the Sentinel program 
which includes observations by radar images in wide spectrum for the monitoring of 
continents, oceans and the atmosphere, has its own provider of spatial data (Copernicus) 
being this the largest provider in the world, currently producing 12 terabytes per day. 
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The majority of data and information of the Copernicus Space infrastructure and the 
Copernicus service are available and accessible for any citizen and any organization all over 
the world, openly and free of charge. Copernicus data and information services can be 
accessed through DIAS or through Conventional Data Access Hubs. 

DIAS (Data and Information Access Services): 

The European Commission has funded the launching of five cloud-based platforms (open 
source and/or pay-per-use) that provide centralized access to Copernicus data and 
information, as well as to the processing tools. Thanks to the existence of a single access point 
for the all Copernicus data and information, DIAS make possible that the users develop and 
lodge their own applications in the cloud, avoiding the need of downloading large files from 
various access spots for local processing. The existence of several DIAS is presented as a way 
to offer diversity to users and to promote competition among them with the confidence that 
this will result in a better offer. 

 ONDA: It is a platform whose users can save data and create applications in the Cloud. 

 CREODIAS: It is a platform in the Cloud that adapts to the processing of big amounts of 
Earth Observation data, including an EO data storage cluster and a dedicated cloud 
infrastructure for platform users. The EO repository contains data from the Sentinel-1, 
2 and 3, Landsat-5, 7, 8, Envisat and many Copernicus services data. The access to the 
satellite images and its download is free, charging for services such as analysis tools, 
storage, etc. 

 Mundi Web Services: Offers to the users and companies unlimited, free and complete 
access to the Copernicus satellite data in real time and permits to combine them with 
their own data and tools to create new products and services that integrate accurate 
and real-time information from the different satellites. The access to the offered 
service is made by two types of account: standard and premium. 

 Sobloo: It has been designed to accommodate all user profiles with different entry 
points and capabilities. It is an open geospatial community for the people that needs 
data and associate service, and for developers that need a dedicated environment to 
build applications. 

 WEkEO: It is a platform in the Cloud which provides environmental data, virtual 
processing environments and support for qualified users. 

Conventional Data Access Hubs: 

The European Space Agency (ESA) manages two data access points from the Copernicus 
satellite: 

 Copernicus Open Access Hub: The portal provides access to Sentinel data through two 
types of interfaces: an interactive graphical interface and another application 
programming interface (API). 

 Copernicus Space Component Data Access (CSCDA): The portal provides access to the 
Copernicus collaborative terrain segment. Anyone can access the data, but 
downloading of images is restricted to public authorities, European projects and 
Copernicus services. 
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EUMETSAT manages two access points to the Copernicus satellite data: 

 EUMETCast: The portal provides access to environmental data in any format. 

 Copernicus Online Data Access (CODA): Provides free and open access to Sentinel-3 
products through a continuous 12-month archive with access to Level 1 and Level 2 
marine data in different latency modes. 

5.2.2 Protocols to access, download and pre-process data 

The Copernicus Open Access Hub is the recommended access point for downloading 
Copernicus data since it is the easiest to use. 

To access the data, any user must previously register on the platform through a simple self-
registration form that implies the recognition of the general terms and conditions for the use 
and distribution of Copernicus Sentinel data (Figure 15 and Figure 16). 

 
Figure 15: Registry access 
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Figure 16: Registration Form 

Once registered, the user can download the images (with a maximum of two images 
simultaneously), selecting the Sentinel product that are interesting to be analysed. This 
download could be made by the interactive graphic user interface or by the API, via a scripted 
interface as this ensures better download performance. Here, a guide is given through the 
interactive graphic user interface, since it is easier to use for the average user and it does not 
require previous programming knowledge. 

The study area of interest must be selected (in orange box) (step 3 and 4, Figure 17). 

Once the study area has been selected, the data to be analysed must be filtered (step 5, Figure 
18). 

 
Figure 17: Selection of region of interest (ROI) 
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To do this, the user must specify in the advanced search the detection period in which the 
analysis is located and if ascending or descending capture is required. In addition, the user 
must specify in the Sentinel-1 boxes, which of the two platforms must be used. Finally, it is 
necessary to check the SLC options in the product type and in the VV polarization box. The 
rest of the boxes can remain unfilled. 

 
Figure 18: Data filtering 

Once this is done, the list of all the images of the study area available is obtained (Figure 19), 
in order to select the appropriate one and download it (step 6, Figure 20-Figure 22). The 
downloading process can take several minutes, due to the weight of the images and the oldest 
images are already archived offline. Therefore, they are not available for direct download. So, 
if the user wants to download them, this must be requested so that within a few hours, the 
possibility of downloading them is activated. 
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Figure 19: Available products and selection of the product to be analysed 

 
Figure 20: Technical description of the parameters of the selected products and download button 
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Figure 21: Technical description of the parameters of the selected products 

 
Figure 22: Technical description of the parameters of the selected products 

Finally, two free access programs are recommended for data processing. For both radar and 
optical images, the use of SNAP is recommended as it is supported by the European Space 
Agency since it gives an easy intuitive graphic interface for the prosecution of data. For radar 
images the free program StaMPS/MTI can also be used. Designed in the original version by the 
Stanford University, this program is especially focused on the detection of displacements in a 
time series by the Permanent Scatterers of InSAR technique through programming and 
commands in a MATLAB environment. 
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